The MSc (Computer Control & Automation) programme provides practising engineers with advanced practical tools in the development, integration, and operation of computer-based control and automation systems.
Have a good relevant bachelor's degree
Relevant working experience is an advantage
For applicants whose native language is not English, TOEFL/IELTS score is to be submitted with the application for admission:
TOEFL Score (Test dates must be within 2 years or less from the date of application):
≥ 563 (paper-based)
≥ 223 (computer-based)
≥ 85 (internet-based)
IELTS Score (Test date must be within 2 years or less from the date of application):
≥ 6.0
Applicants without TOEFL/IELTS would still be eligible to apply, but they may be subjected to an interview/test if deemed necessary by the School.
Programme Structure
There are two options of study, one with coursework and dissertation, and the other with coursework only. Each course is of 3 AUs and consists of 39 hours of lectures. Candidates who undertake a project of 6 AUs must submit a dissertation on it.
Option 1
|
Option 2
|
8 courses + dissertation project (30 AUs in total) |
10 courses (30 AUs in total) |
4 specialized electives (≥ 12 AUs) | 4 specialized electives ((≥ 12 AUs) |
4 general electives (≤ 12 AUs) |
6 general electives (≤ 18 AUs) |
Dissertation (6 AUs) |
Full-time students are strongly recommended to select the dissertation option, however this option is recommended only for students with a high level of English proficiency. Students taking the dissertation option may take a longer time to complete the programme.
Note: The programme structure will be subject to change without prior notice.
Duration
Both full-time and part-time programmes are offered (unless stated). Part-time candidates are expected to obtain permission from their employer before admission to the programme. All classes are conducted in the evenings, while ex aminations are conducted during office hours.
Type of Coursework Programme |
Minimum Candidature |
Maximum Candidature |
Master of Science (Full-Time) |
1 year | 3 year |
Master of Science (Part-Time) |
2 year | 4 year |
Programme Calendar
Semester 1 | August to December |
Semester 2 | January to May |
Week 1 to 14 | Lecture (Inclusive of 1-week recess) |
Week 15 to 17 | Examinations |
Other | Vacation |
Graduate courses offered by Master of Science (MSc) Computer Control & Automation:
Specialized Elective Courses (Students are required to take a min of 4 out of all the 5 specialized elective courses)
Course Code |
Course Title |
Course Content |
AUs |
EE6203 |
Computer Control Systems |
Discrete-time system modelling and analysis. Cascade compensation. State-space design methods. Optimal control. Design and implementation of digital controllers. | 3 |
EE6204 | Systems Analysis | Linear, Dynamic and Integer Programming. Optimization Techniques. Random Processes. Queuing Models. Markov Decision Process. | 3 |
EE6221 | Robotics & Intelligent Sensors | Overview of robotics. Motion planning and control. Mobile robots . Controller hardware/software systems. Sensor systems and integration. | 3 |
EE6222 | Machine Vision | Fundamentals of image processing & analysis. Feature Extraction Techniques. Pattern / Object Recognition and Interpretation. Three- Dimensional Computer Vision. Three-Dimensional Recognition Techniques. Biometrics. | 3 |
EE6225 | Multivariable Control Systems Analysis and Design | Basic control algorithms. Model Predictive Control. Multivariable control. Plant parameter estimation. Case studies in process control. | 3 |
General Elective Courses
Course Code |
Course Title |
Course Content |
AUs |
EE6010 | Project Management & Technopreneurship | Project Initiation and Planning. Project Scheduling and Implementation. Project Monitoring, Control and Evaluation. Innovation and Entrepreneurship. | 3 |
EE6102 | Cyber Security and Blockchain Technology | Cyber Security Threat Landscape, Industry 4.0 and Cyber Security, Cyber Security Education, Awareness and Compliance, Cyber Security Planning, Policies and Compliance, Cyber Security Risk Assessments and Biometric-based Security approaches, Public key Infrastructure (PKI), Web Security and role of firewalls and Intrusion Detection, Online Payment, and Cryptocurrencies. Basics of Blockchain technology, Types of blockchain Technology, Blockchain Technology Applications for Industry 4.0, use cases and real-world case studies | 3 |
EE6223 | Computer Control Networks | Data Networks in Control and Automation. Local Area Network Concepts and Fieldbus. Application Layer of Fieldbus and MAP. Internetworking and Protocols. Real-time Operating Systems and Distributed Control. Network Performance and Planning. Multimedia in Advanced Control and Instrumentation. | 3 |
EE6227 | Genetic Algorithms and Machine Learning | Review of Combinatorics and Probability. Introduction of Genetic Algorithms. Differential Evolution. Particle Swarm Optimization. Advanced Techniques. Principles of Machine Learning. Paradigms of Machine Learning. Kernel Methods. | 3 |
EE6401 | Advanced Digital Signal Processing |
|
3 |
EE6427 | Video Signal Processing |
Image and Video Basics. Image and Video Transform Coding.
Filtering and Error Resilience for Image and Video. Image and Video Coding Principles and Standards. Recent and Emerging Topics in Image and Video Processing.
|
3 |
EE6503 | Modern Electric Drives |
Introduction. DC Motor Drives. Induction Motor Drives. Synchronous Motor Drives. Servo-Motor Drives.
|
3 |
EE6506 | Power Semiconductor Based Converter in Renewable Energy Systems | Module 1: Overview of power electronic circuits and semiconductor devices, Module 2: Power diodes and thyristors as switching devices, Module 3: Power transistors as switching devices 2, Module 4: Protection of devices from overheating di/dt, dv/dt, Module 5: Passive components and magnetics, Module 6: Renewable energy systems | 3 |
EE6509 | Renewable Energy Systems in Smart Grids | Introduction to Power Systems with Distributed Generation. Distributed Generation. Energy Storage. Smart Grids. | 3 |
EE6511 | Power System Modelling & Control | Steady-state Power System Networks. Network Components. Stability Analysis. Power System Control. | 3 |
EE7204 | Linear Systems |
Input/Output System Models. State Space Representation. Norms of Signals and Systems. Decomposition of Linear Time-Invariant Systems. Linear Feedback Design. Convex Optimization for Linear System Analysis and Design.
|
3 |
EE7207 | Neural and Fuzzy Systems |
Introduction to artificial neural networks. Recurrent and Hopfield Neural Network. Multi-layer perception neural network. Radial basis function neural network. Support vector machines. Self-organizing map neural network. Applications of neural network. Fundamentals of fuzzy logic and fuzzy systems. Takagi-Sugeno (T-S) fuzzy modelling and identification. Stability analysis of fuzzy systems. Applications of fuzzy systems.
|
3 |
EE7401 | Probability and Random Processes | Probability concepts. Random variables. Multiple random variables. Sum of random variables and multidimensional distributions. Random Sequences. Probability density function estimation. Random variable simulation. Random processes. Correlation functions. Spectral density. Random processes in linear systems. Optimum linear systems. Nonlinear systems. | 3 |
EE7403 | Image Analysis and Pattern Recognition |
Image Fundamentals. Image Enhancement and Restoration. Image Analysis. Decision Theory and Statistical Estimation. Classification and Clustering. Dimensionality Reduction.
|
3 |
Note: the above curriculum is subject to change.
Tuition Fee
Five MSc programmes (Communications Engineering, Computer Control & Automation, Electronics, Power Engineering and Signal Processing) are self-financed programmes.
Students of these programmes are not eligible for Service Obligation/ MOE Subsidies.
The tuition fees per module (3 AUs) and per dissertation (6 AUs) for admission from AY2020 onwards are shown in the table as follows:
Singaporeans (SC) | Singapore PRs (SPR) | International Students (IS) | |||
---|---|---|---|---|---|
Per Module | Per Dissertation^ | Per Module | Per Dissertation^ | Per Module | Per Dissertation^ |
S$3,240* | S$6,480* | S$3,780* | S$7,560* | S$4,320* | S$8,640* |
Minimum Total Programme Fee | Minimum Total Programme Fee | Minimum Total Programme Fee | |||
S$32,400 | S$37,800 | S$43,200 |
*Inclusive of GST
^The tuition fee for the Dissertation (6 AUs) will be twice of each module fee.
All fees listed above are in Singapore dollars (S$) and subject to annual
revision by the school. The tuition fee is exclusive of living expenses and miscellaneous student fees.
The deposit fee of S$2,000 is payable upon acceptance of the offer and is non-refundable. It will
be deducted from the full tuition fee.
Awards in MSc Programme
Awards Title | Awards Description |
IEEE PHOTONICS & SOCIETY SINGAPORE CHAPTER & THE OPTICAL SOCIETY (OSA) | The Prize (cash award) is awarded to the student with the highest mark in the course EE6122 (Optical Fibre Communications). |
MICRON GOLD MEDAL | The medal is awarded to the best graduating student with highest aggregate marks in the degree of Master of Science (Electronics) and who has completed the programme within 2 years. |
PROFESSIONAL ENGINEERS BOARD GOLD MEDAL |
The medal is awarded to the graduating student with the highest average marks in the coursework component and who had completed the programme offered by the School of EEE.
The awardees are required to have their first degree from the respective prescribed programmes.
|
TEXAS INSTRUMENTS BOOK PRIZE | The book prize (cash award) is awarded to the student with the highest mark in the course EE6402 (Real-time DSP Design and Applications). |