Our Publications

The Digital Trust Centre (DTC) at NTU Singapore focuses on research and development in trust technologies, including AI Safety.

2025

  • Sun, J., Xu, G., Yang, Y., Yang, X., Li, X., Wu, C., Liu, Z., Yang, G., & Deng, R. H. (2025). Forward-secure hierarchical delegable signature for smart homes. IEEE Transactions on Information Forensics and Security, 20, 3950–3965. https://doi.org/10.1109/TIFS.2025.3555185
  • Wang, D., Cao, Y., Lam, K.-Y., Chi, C. H., & Choo, K. K. R. (2025, January 28). An accountable GAKA protocol with changeable thresholds and verifiable shares in UAVs-assisted IoVs for emergency rescue. IEEE Transactions on Intelligent Transportation Systems, 26(4), 5522–5537. https://doi.org/10.1109/TITS.2025.3531383
  • Jiang, Y., Shen, J., Liu, Z., Tan, C. W., & Lam, K.-Y. (2025, January 24). Towards efficient and certified recovery from poisoning attacks in federated learning. IEEE Transactions on Information Forensics & Security. https://doi.org/10.1109/TIFS.2025.3533907
  • Tu, R., Kang, X., Li, E., Tan, C. W., Chi, C. H., & Lam, K.-Y. (2025). Sentences based adversarial attack on AI-generated text detectors. IEEE Transactions on Big Data. https://doi.org/10.1109/TBDATA.2025.3600034
  • Du, H., Niyato, D., Kang, J., Xiong, Z., Lam, K.-Y., Fang, Y., & Li, Y. (2025). Spear or shield: The role of generative AI in intelligent network services. IEEE Network Magazine. https://doi.org/10.1109/MNET.2025.3594769
  • Li, F., Chen, X., Lam, K.-Y., Wang, L., & Liu, X. (2025). A secure wireless traffic prediction with federated learning. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2025.3594326
  • Li, F., Wang, Y., Lam, K.-Y., Shen, B., & Wang, L. (2025, September). A secure dynamic spectrum access scheme for Internet-of-Things with swarm learning. IEEE Internet of Things Journal, 12(18), 37720–37733. https://doi.org/10.1109/JIOT.2025.3583710
  • Karunanayake, B., Khalil, I., Yi, X., & Lam, K.-Y. (2025, September). Toward LLM-driven adaptive policy orchestration for host-based intrusion detection systems in IoT environments. IEEE Network Magazine, 39(5), 66–73. https://doi.org/10.1109/MNET.2025.3579532
  • Shen, B., Lam, K.-Y., Li, F., & Wang, L. (2025). Privacy-aware spectrum pricing and power control optimization for LEO satellite Internet-of-Things. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2025.3574172
  • Hou, Y., Cao, Y., Xiong, H., He, D., Chi, C. H., & Lam, K.-Y. (2025). Heterogeneous parallel key-insulated multi-receiver signcryption scheme for IoV. IEEE Transactions on Information Forensics & Security. https://doi.org/10.1109/TIFS.2025.3567917
  • Li, F., Yang, J., Lam, K.-Y., Shen, B., & Luo, H. (2025, July). A dynamic spectrum access scheme for Internet of Things with improved federated learning. Journal of Network and Computer Applications, 239, 104189. https://doi.org/10.1016/j.jnca.2025.104189
  • Shang, C., Cao, J., Li, Z., Niu, B., Lam, K.-Y., Chi, C. H., & Li, H. (2025, August). A hierarchical encrypted compression scheme for intra-vehicle network. IEEE Transactions on Intelligent Transportation Systems, 26(8), 11916–11930. https://doi.org/10.1109/TITS.2025.3558192
  • Liu, Z., Ye, H., Jiang, Y., Shen, J., Guo, J., Tjuawinata, I., & Lam, K.-Y. (2025). Privacy-preserving federated unlearning with certified client removal. IEEE Transactions on Information Forensics & Security, 20, 3966–3978. https://doi.org/10.1109/TIFS.2025.3555868
  • Ye, H., Guo, J., Liu, Z., Jiang, Y., & Lam, K.-Y. (2025, April). Enhancing AI safety of machine unlearning for ensembled models. Applied Soft Computing, 174, 113011. https://doi.org/10.1016/j.asoc.2025.113011
  • Liu, Z., Ye, H., Chen, C., Zheng, Y., & Lam, K.-Y. (2025). Threats, attacks, and defenses in machine unlearning: A survey. IEEE Open Journal of the Computer Society. https://doi.org/10.1109/OJCS.2025.3543483
  • Tu, R., Kang, X., Tan, C. W., Chi, C. H., & Lam, K.-Y. (2025). All points guided adversarial generator for targeted attack against deep hashing retrieval. IEEE Transactions on Information Forensics & Security, 20, 1695–1709. https://doi.org/10.1109/TIFS.2025.3534585
  • Fan, J., Liu, Z., Du, H., Kang, J., Niyato, D., & Lam, K.-Y. (2025, April). Improving security in IoT-based human activity recognition: A correlation-based anomaly detection approach. IEEE Internet of Things Journal, 12(7), 8301–8315. https://doi.org/10.1109/JIOT.2024.3501361
  • Shang, C., Cao, J., Luo, Y., Niu, B., Gan, L., Lam, K.-Y., & Chi, C. H. (2025, March). A vision of 3GPP wireless sensing for intelligent vehicles: Scenarios, architectures, security challenges, solutions, and future trends. IEEE Network Magazine, 39(2), 80–90. https://doi.org/10.1109/MNET.2024.3480973
  • He, Y., Peng, F., Cai, R., Yu, Z., Long, M., & Lam, K.-Y. (2025). Category-conditional gradient alignment for domain adaptive face anti-spoofing. IEEE Transactions on Information Forensics & Security. https://doi.org/10.1109/TIFS.2024.3486098
  • Liu, Z., Jiang, Y., Jiang, W., Guo, J., Zhao, J., & Lam, K.-Y. (2025). Guaranteeing data privacy in federated unlearning with dynamic user participation. IEEE Transactions on Dependable and Secure Computing. https://doi.org/10.1109/TDSC.2024.3476533
  • Liu, R., Lam, K.-Y., Zhou, W., Wu, S., Zhao, J., Hu, D., & Gong, M. (2025). STBA: Towards evaluating the robustness of DNNs for query-limited black-box scenario. IEEE Transactions on Multimedia, 27, 2666–2681. https://doi.org/10.1109/TMM.2025.3535328
  • Kalapaaking, A., Khalil, I., Yi, X., Lam, K.-Y., Huang, G. B., & Wang, N. (2025, January). Auditable and verifiable federated learning based on blockchain-enabled decentralization. IEEE Transactions on Neural Networks and Learning Systems, 36(1), 102–115. https://doi.org/10.1109/TNNLS.2024.3407670
  • Zheng, Y., Wang, G., Qin, J., Chen, Z., Lin, J., Wei, P., Lin, L., & Lam, K.-Y. (2025). CIREC: Causal intervention-inspired policy learning to mitigate exposure bias for interactive recommendation. IEEE Transactions on Knowledge and Data Engineering. Accepted. DOI pending

2024

  1. Luo, B., Zhang, Z., Wang, Q., Ke, A., Lu, S., & He, B. (2024). AI-powered fraud detection in decentralized finance: A project life cycle perspective. ACM Computing Surveys, 57(4), Article 96, 1–38.https://doi.org/10.1145/3705296 
  2. Fan, J., Liu, Z., Du, H., Kang, J., Niyato, D., & Lam, K.-Y. (2024, November 29). Improving security in IoT-based human activity recognition. IEEE Internet of Things Journal, 12(7), 8301–8315. https://doi.org/10.1109/JIOT.2024.3501361
  3. Liu, Z., Jiang, Y., Shen, J., Peng, M., Lam, K.-Y., Yuan, X., & Liu, X. (2024, October 7). A survey on federated unlearning: Challenges, methods, and future directions. ACM Computing Surveys. https://doi.org/10.1145/3679014
  4. Kruglik, S., Dau, S. H., Kiah, H. M., Wang, H., & Zhang, L. F. (2024, September 2). Querying twice to achieve information-theoretic verifiability in private information retrieval. IEEE Transactions on Information Forensics and Security, vol. 19, pp. 8172-8187. https://doi.org/10.1109/TIFS.2024.3453550 
  5. Guo, Q., Wang, Z., Juefei-Xu, F., Lin, D., Ma, L., Feng, W., & Liu, Y. (2024, August 16). CarveNet: Carving point-block for complex 3D shape completion. IEEE Transactions on Multimedia, vol. 27, pp. 1047-1058. https://doi.org/10.1109/TMM.2024.3443613 
  6. Hu, J., Zhao, Y., Tan, B. H. M., Aung, K. M. M., & Wang, H. (2024, May 17). Enabling threshold functionality for private set intersection protocols in cloud computing. IEEE Transactions on Information Forensics and Security, vol. 19, pp. 6184-6196, 2024, doi: 10.1109/TIFS.2024.3402355. https://doi.org/10.1109/TIFS.2024.3402355 
  7. Liu, R., Zhou, W., Zhang, T., Chen, K., Zhao, J., & Lam, K.-Y. (2024, April 17). Boosting black-box attack to deep neural networks with conditional diffusion models. IEEE Transactions on Information Forensics & Security, 20, 1695–1709. https://doi.org/10.1109/TIFS.2024.3515792
  8. Yang, M., Tjuawinata, I., Lam, K.-Y., Zhu, T., & Zhao, J. (2024, April). Local differential privacy and its applications: A comprehensive survey. IEEE Internet of Things Journal, 12(7), 8301–8315. https://doi.org/10.1109/JIOT.2024.3501361
  9. Kalapaaking, A., Khalil, I., Yi, X., Lam, K.-Y., Huang, G. B., & Wang, N. (2024, June 14). Auditable and verifiable federated learning based on blockchain-enabled decentralization. IEEE Transactions on Neural Networks and Learning Systems, 36(1), 102–115. https://doi.org/10.1109/TNNLS.2024.3407670
  10. Liu, Z., Guo, J., Yang, W., Fan, J., Lam, K.-Y., & Zhao, J. (2024, January 19). Dynamic user clustering for efficient and privacy-preserving federated learning. IEEE Transactions on Dependable and Secure Computing. https://doi.org/10.1109/TDSC.2024.3476533
  11. Lam, K.-Y., Lu, X., Zhang, L., Wang, X., Wang, H., & Goh, S. Q. (2024, January 12). Efficient FHE-based privacy-enhanced neural network for trustworthy AI-as-a-service. IEEE Transactions on Information Forensics & Security. https://doi.org/10.1109/TIFS.2025.3567917

2023

2022

 

 

2025

2024

 

Books

  • X. Yi. X. Yang, X. Liu, A. Kelarev, K.Y. Lam, M. Yang, X. Wang and E. Bertino. “Privacy Enhancing Techniques: Practices and Applications”, Springer Cham, July 2025, ISBN 978-3-031-95139-8. https://doi.org/10.1007/978-3-031-95140-4.

 

Projects and Case Studies