The reaction mechanism of formation of chemically synthesized Nd$_2$Fe$_{14}$B hard magnetic nanoparticles

P.K. Deheri, S. Shukla, R.V. Ramanujan*

School of Materials Science and Engineering, Division of Materials Science, Nanyang Technological University, Singapore 639 798, Singapore

A R T I C L E I N F O

Article history:
Received 5 August 2011
Received in revised form 27 September 2011
Accepted 13 November 2011
Available online 9 December 2011

Keywords:
Magnetic nanoparticles
Chemical synthesis
Reduction–diffusion (R–D) method
Mechanism of formation

A B S T R A C T

Nd$_2$Fe$_{14}$B based magnetic materials exhibit excellent magnetic properties and are widely used in many engineering applications. However, chemical synthesis of this compound is challenging. In this work, the formation mechanism of chemically synthesized Nd$_2$Fe$_{14}$B magnetic nanoparticles was studied. Nd, Fe and B precursors were converted to Nd–Fe–B oxide by the sol–gel method, reduction of these oxides by CaH$_2$ resulted in Nd$_2$Fe$_{14}$B nanoparticles. Nd$_2$Fe$_{14}$B phase formation resulted from two competing reactions: (a) Nd$_2$Fe$_{14}$B phase formation by direct combination of NdH$_2$, Fe and B, (b) Nd$_2$Fe$_{14}$B phase formation from NdH$_2$ and Fe, followed by Nd$_2$Fe$_{14}$B phase formation by the reaction of Nd$_2$Fe$_{14}$B and B. Addition of boron to Nd–Fe–B oxide during reduction resulted in improved magnetic properties. The activation energy for Nd$_2$Fe$_{14}$B phase formation was found to be 365 kJ mol$^{-1}$. The optimum heat treatment temperature and time for Nd$_2$Fe$_{14}$B phase formation were found to be 800 °C and 90 min, respectively.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Rare earth based Nd–Fe–B permanent magnetic materials have an enormous range of technological applications due to their excellent combination of high coercivity and energy product (BH_{max}). These permanent magnets in bulk form are used in electric motors, generators, magnetic separators, magnetic levitation systems and loud speakers. Nd$_2$Fe$_{14}$B based powders are used in preparation of sintered magnets and bonded magnets [1]. Nd$_2$Fe$_{14}$B magnetic nanostructured materials have found applications in sensors, transducers, magnetic fluids and in magnetic elastomers [2–4]. At the industrial level, these intermetallic compounds are synthesized by physical methods such as melt spinning and the ball milling routes [5–7]. However, physical methods impose a number of limitations on the alloy composition, particle size control and the form of the final magnet. Hence, there has been an intense effort to process these magnetic materials by chemical synthesis techniques [8–10]. However, due to the large difference in the reduction potential, co-reduction of transition metal and rare earth elements is challenging [11]. Solution based synthesis combined with high temperature solid state reduction has been shown to be a successful method to prepare Sm–Co hard magnetic nanoparticles [12]. One potential chemical route to prepare Nd–Fe–B magnetic nanoparticles is the use of the sol–gel method to produce Nd–Fe–B mixed oxide followed by reduction–diffusion (R–D) to produce Nd$_2$Fe$_{14}$B based alloys. Reduction–diffusion (R–D) involves reduction of Nd–Fe–B oxide by calcium or calcium hydride to produce Nd$_2$Fe$_{14}$B and CaO [13–18]. The CaO can be removed by washing with water to obtain the desired Nd$_2$Fe$_{14}$B nanoparticles.

Besides technological applications, the magnetic properties of nanoparticles are also of fundamental scientific interest due to single domain particle magnetism and superparamagnetism [19]. Moreover, extrinsic magnetic properties such as coercivity and remanent magnetization are size and shape dependant, hence it is essential to understand the kinetics and mechanism of the formation of crystallization products. This will enable us to control shape and size of particles at the nanoscale. Hence, determination of the kinetics and the mechanism of formation of Nd$_2$Fe$_{14}$B nanoparticles is of considerable research interest. Synthesis of Nd$_2$Fe$_{14}$B by chemical routes offers the possibility of size and shape control by control of the nucleation and growth of particles [20]. The nanoparticle size can be controlled by adjusting reaction parameters, such as time, temperature and concentration of reagents [21]. For example, during reduction of metal salts by sodium borohydride, rapid injection of the reducing agent results in a high nucleation rate. Subsequently, the reducing agent can be added slowly to control growth [22]. In an alternative process, reagents are mixed at low temperature and slowly heated at a controlled rate to induce nucleation. The particle size subsequently increases by Ostwald ripening [23]. Growth can be...
minimized by decreasing the reaction temperature or minimizing the availability of the relevant reactant [21,22]. In the reduction–diffusion process, growth can be controlled by controlling the reaction temperature and time [24]. The anisotropic growth of particles determines the particle shape and can be either diffusion controlled or reaction controlled [25].

The reduction–diffusion (R–D) process has been previously reported as a promising technique to produce Nd2Fe14B based magnetic nanoparticles [15,26]. In such solid state reactions, determination of the kinetics, rate controlling steps and kinetic parameters such as activation energy provide valuable insights into the reaction mechanism [27,28]. Sidhu and Verma [24] have studied the kinetics of formation of Nd2Fe14B by calciothermic reaction, however, the mechanism and kinetics were not clearly identified. Hence, we studied the kinetics, thermodynamic and mechanism of synthesis of Nd2Fe14B by first preparing Nd–Fe–B oxide by the sol–gel, followed by reduction–diffusion (R–D) process to produce Nd2Fe14B nanoparticles. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques were used in this study. The reduction–diffusion (R–D) was a three step process: reduction of Fe2O3 to Fe and B2O3 to B at 300 °C, followed by reduction of Nd2O3 and NdFeO3 to NdH2 and Fe at 620 °C. In the final step, Nd2Fe14B phase formation occurred. This was the result of two concurrent competing reactions. One reaction involved direct combination of NdH2, Fe and B to form Nd2Fe14B phase, while in the other reaction the formation of Nd2Fe17 from NdH2 and Fe occurred, followed by Nd2Fe14B phase formation by reaction of Nd2Fe17 with B. Addition of amorphous boron to Nd–Fe–B oxide during reduction resulted in increased Nd2Fe14B mass percentage and improved magnetic properties. The activation energy for Nd2Fe14B phase formation (Ea) was found to be

![Fig. 1. Rietveld refinement of Nd–Fe–B alloy nanoparticles synthesized by sol–gel followed by reduction–diffusion. The phases present are Nd2Fe14B, α-Fe and CaO. Nd2Fe17 phase was also observed due to boron loss during reduction.](image1)

![Fig. 2. Rietveld refinement of Nd–Fe–B synthesized by sol–gel followed by reduction–diffusion: (A) without boron (800 °C, 90 min) and (B) with 0.2 wt% of amorphous boron (800 °C, 90 min). Weight percent of Nd2Fe17 phase is decreased with boron addition.](image2)
365 kJ mol\(^{-1}\). The activation energies corresponding to \(a\)-Fe formation and NdH\(_2\) formation were 96 kJ mol\(^{-1}\) and 409 kJ mol\(^{-1}\), respectively. The optimum heat treatment temperature and time for Nd\(_2\)Fe\(_{14}\)B phase formation were found to be 800 °C and 90 min, respectively.

2. Experimental

Neodymium chloride hexahydrate (NdCl\(_3\)·6H\(_2\)O, 99.9%), iron chloride hexahydrate (FeCl\(_3\)·6H\(_2\)O, 97–102%), boric acid (H\(_3\)BO\(_3\), 99.8%), citric acid (99.5%) and ethylene glycol (99%) from Alfa Aesar, CaH\(_2\) (90–95%, Sigma) were used for synthesis. The synthesis of Nd–Fe–B oxide was carried out by a Pechini type sol–gel process [29]. In a typical experiment, nominal composition of Nd\(_{15}\)Fe\(_{77.5}\)B\(_{7.5}\) was selected, which had been previously shown to result in the maximum mass percentage of Nd\(_2\)Fe\(_{14}\)B phase and good magnetic properties [26]. Stoichiometric quantity of neodymium chloride hexahydrate, iron chloride hexahydrate and boric acid were dissolved in deionized water. Then citric acid and ethylene glycol in 2:1 molar ratio to metal salts were added to prepare a thermally stable sol. The mixed solution was heated at 90 °C overnight resulting a viscous gel, the gel was then dried at 200 °C. The dried gel was then heated at 400 °C for 2 h, followed by 800 °C for 2 h, to prepare Nd–Fe–B oxide powder. These oxides were analyzed by X-ray diffraction and used in the subsequent reduction–diffusion (R–D) process to form Nd\(_3\)Fe\(_{14}\)B powder particles. The Nd\(_3\)Fe\(_{14}\)B powder morphologies were examined by transmission electron microscope (JEOL-TEM 2010, 200 kV).

2.1. Kinetics

The mixture of Nd–Fe–B oxide and CaH\(_2\) were heat treated in a vacuum furnace (10\(^{-5}\) Pa) at a heating rate of 15 K/min and the reaction products were analyzed by XRD techniques. The phases formed were identified by a Bruker AXS X-ray diffractometer (CuK\(_\alpha\) radiation, \(\lambda=0.154 \text{ nm}\)). The XRD data were collected in the 2\(\theta\) range of 20–120° with a 0.01 step size. Rietveld refinement was carried out using the software program TOPAS 4. Tetragonal Nd\(_2\)Fe\(_{14}\)B (space group P42/mnm), Nd\(_2\)Fe\(_{14}\)BH\(_{4.7}\) (space group P42/mnm) and \(a\)-Fe (space group I4\(_3\)m) were taken as the starting model. The mass percentage obtained by the Rietveld refinement was used for kinetic study. To minimize the mass percentage of Nd\(_2\)Fe\(_{17}\) phase in the final product, 0.2 wt% of amorphous boron was added to Nd–Fe–B oxide. Isothermal DSC of mixtures of Nd–Fe–B oxide, amorphous boron and CaH\(_2\) powders were carried out at temperatures of 265 °C, 616 °C and 650 °C.

Fig. 3. Room temperature VSM properties of Nd–Fe–B synthesized by sol–gel followed by reduction–diffusion method (as synthesized, with and without boron addition). Magnetic properties increased with 0.2 wt% of amorphous boron addition.

Fig. 4. Rietveld refinement of Nd–Fe–B synthesized by sol–gel followed by reduction–diffusion at 650 °C (42 °C below the Nd\(_3\)Fe\(_{14}\)B phase transformation peak temperature of DSC). Both Nd\(_{3}\)Fe\(_{14}\)B and Nd\(_{2}\)Fe\(_{17}\) phases are formed at this temperature.
2.2. Activation energy determination

To determine the activation energy of reduction of Nd–Fe–B oxide to form Nd$_2$Fe$_{14}$B and α-Fe phases, isochronal DSC measurements of mixtures of Nd–Fe–B oxide, 0.2 wt% amorphous boron and 1.4 wt% CaH$_2$ were carried out in argon using a Netzsch DSC–404 at heating rates of 5 K, 10 K, 15 K and 20 K per minute.

3. Results and discussion

3.1. Synthesis of Nd$_2$Fe$_{14}$B nanoparticles

Solution based synthesis followed by reduction–diffusion (R–D) was found to be a successful method to produce rare-earth magnetic nanoparticles [12,18,26]. The synthesis consists of two

Fig. 6. (A) JMA plot corresponding to Fe$_2$O$_3$ and B$_2$O$_3$ reduction, (B) JMA plot corresponding to Nd$_2$O$_3$ and NdFeO$_3$ reduction and (C) JMA plot corresponding to Nd$_2$Fe$_{14}$B formation.
steps: Nd–Fe–B oxide preparation by sol–gel method followed by reduction–diffusion (R–D) by CaH2 [26]. The Nd–Fe–B gel was a Nd–Fe–B–citrate complex cross linked by ethylene glycol [26]. The Nd–Fe–B oxide which was obtained by heating this Nd–Fe–B gel, was found to be a mixture of Nd2O3, NdFeO3, Fe2O3 and B2O3 oxides [26]. Annealing of the mixture of Nd–Fe–B oxide and CaH2 in the mass ratio of 1:1.4, respectively, resulted in the formation of a mixture of Nd2Fe14B, Nd2Fe17, x-Fe and CaO phases (Fig. 1). The CaO phase was removed by washing with dilute acetic acid and deionized water to isolate the magnetic nanoparticles. Fig. 2 shows the Rietveld refined data of CaO removed samples. The final products also contained ~16 wt% of Nd2Fe17 phase (Fig. 2A). The addition of 0.2 wt% of amorphous boron to the mixture of Nd–Fe–B oxide and CaH2, reduced the weight percent of the Nd2Fe17 phase to ~5 wt% (Fig. 2B). The magnetic properties were improved by amorphous boron addition (Fig. 3); coercivity increased from ~500 to ~700 kA m−1 and magnetization increased from 160 to 196 kA m−1. The maximum weight percent of the Nd2Fe14B phase was found to be ~92 wt% (Fig. 2B), for 90 min reduction at 800 °C. This mass percentage was later used in the mass fraction calculation for kinetic conversion studies.

3.2. Formation mechanism of Nd2Fe14B

Recently, the reduction–diffusion (R–D) mechanism of Nd2Fe14B formation from Nd–Fe–B oxide was studied, the steps are [26]:

Step 1—at 300 °C: Fe2O3 + 3CaH2 → 2Fe + 3CaO + 3H2 ↑

\[\text{Reaction 1} \]

Step 2—at 620 °C: Nd2O3 + 3CaH2 → 2NdH2 + 3CaO + H2 ↑

\[\text{Reaction 2} \]

Step 2—at 620 °C: NdFeO3 + 3CaH2 → Nd2H2 + Fe + 3CaO + 2H2 ↑

\[\text{Reaction 3} \]

Step 3—at 692 °C: 2NdH2 + 14Fe + B → Nd2Fe14B + 2H2 ↑

\[\text{Reaction 4} \]

Isothermal DSC was also carried out at 650 °C to study the Nd2Fe14B phase formation kinetics. Nd2Fe14B phase formation by two competing reactions was further validated by the exothermic peak shoulder (Fig. 5) [30]. A broad shoulder was observed for isochronal DSC study at a heating rate of 5 K min−1 while a single peak was observed for 20 K min−1 rate. This observation suggested that the order of reactions 5, 6 and 7 is greater than one; when the reaction order is equal to one only a single peak is observed [30]. This further showed that the values of activation energy and the pre-exponential factors of both the reaction paths (reactions 5–7) were different [30], and the dominance of reaction paths were dependant on heating rate.

3.3. Kinetics

3.3.1. Differential scanning calorimetry

Isothermal DSC measurements were carried out to investigate the kinetics of the reduction–diffusion (R–D) process of Nd2Fe14B formation. To study nucleation and growth, isothermal DSC measurements were performed at temperatures lower than the peak temperature of 300, 620 and 692 °C. A theoretical basis for the interpretation of isothermal DSC data was provided by Avrami [31,32] and describes the evolution of the volume fraction crystallized (x) as a function of time t. The fraction of phase formed x(t), can be expressed as

\[x(t) = 1 - e^{-kt^n} \]

(8)

where k is the rate constant and reflects the rate of nucleation and growth. The variable n is the Avrami exponent and depends on the type of nucleation and growth process. The fraction of phase formed was determined by calculating the fractional area of the isothermal peak. The value of k and n can be calculated from Eq. (8), which can be rearranged as

\[\ln[-\ln(1-x)] = n \ln k + n \ln t \]

(9)

A plot of \(\ln[-\ln(1-x)] \) vs. ln t is called the Johnson–Mehl–Avrami (JMA) plot [31,32], the JMA plot for the reduction process and Nd2Fe14B phase formation is shown in Fig. 6. The Avrami exponent n and kinetic constant k were calculated from the slope and intercept of the plot. The Avrami exponent for the reductions of Fe2O3 and B2O3 was 1.96 (for reactions (1) and (2)). However, the JMA plots for reductions of Nd2O3 and NdFeO3 (reactions (3) and (4)) and for Nd2Fe14B phase formation (reactions (5)–(7)) were not straight line but could be approximated by two linear steps, due to two steps with different nucleation and growth kinetics. The first step in the reactions 3 and 4, the Avrami exponent was 1.1 followed by 2.6 in the second step. The Avrami exponents for Nd2Fe14B phase formation were 3.2 and 2.1 for first and second steps, respectively. The value of Avrami exponent of 3.0 represents isotropic crystal growth [33], lower values represent lower dimensional growth. TEM analysis showed inhomogeneous morphology (Fig. 7) and nano-rod shape (Fig. 8), this anisotropic factor could be responsible for the Avrami exponent value being lower than 3.
3.3.2. X-ray diffraction

For this alloy composition the pseudo-binary phase diagram does not show the Nd$_2$Fe$_{17}$ phase [34]. However, the metastable Nd$_2$Fe$_{17}$ phase formed (reaction (6)), could only be removed (reaction (7)) very slowly (Fig. 9). The mass percentage of Nd$_2$Fe$_{17}$ phase fluctuated with reduction time for reduction temperatures of 692°C and 750°C (Fig. 9). This type of fluctuation reaction may be due to the stochastic nature of the processes of reduction and diffusion and limits the applicability of Avrami exponent calculations in this temperature range. This mass fluctuation is consistent with the competing nature of the formation reactions of Nd$_2$Fe$_{14}$B by direct combination of NdH$_2$, Fe, B (reaction (5)) and via Nd$_3$Fe$_{17}$ intermediate formation (reactions (6) and (7)). There was no reaction fluctuation at 800°C (Fig. 10). The reaction mixture annealed at 800°C for 90 min produced Nd$_2$Fe$_{14}$B nanoparticles and a smaller mass percentage of the Nd$_3$Fe$_{17}$ phase (Figs. 10A and 2B). The Avrami exponent for Nd$_2$Fe$_{14}$B phase formation at 800°C was calculated to be 1.8 (Fig. 10B).

3.4. Activation energy of Nd$_2$Fe$_{14}$B phase formation by reduction-diffusion (R-D) process

The activation energy is usually evaluated from isochronal DSC thermograms obtained at various heating rates [35]. The activation energy of phase formation can be characterized by activation energies of nucleation and growth. The compounded activation energy of both nucleation and growth was calculated using the Kissinger model [35]. The peak temperature T_p and heating rate b are related to the activation energy (E_a) by

$$\ln \left(\frac{b}{T_p^2} \right) = -\frac{E_a}{RT_p} + C$$ \hspace{1cm} (10)

The activation energy (E_a) was determined from the slope of the $\ln \left(\frac{b}{T_p^2} \right)$ vs. 1000/T_p curve. The typical DSC of the reduction-diffusion (R-D) process for different heating rates is shown in Fig. 5. The first two peaks correspond to reduction reactions, the peak near 692°C corresponds to Nd$_2$Fe$_{14}$B phase formation. The endothermic peak near 800°C corresponds to the melting point of calcium.

The plot of $\ln \left(\frac{b}{T_p^2} \right)$ vs. 1000/T_p for Nd$_2$Fe$_{14}$B phase formation is shown in Fig. 11. Since, Nd$_2$Fe$_{14}$B phase formation was a multistep reaction (reactions (5)–(7)), the calculated activation energy corresponded to the overall reaction, E_a was calculated to be 365 kJ mol$^{-1}$. This activation energy was eight fold larger than the activation energy calculated for TbFe$_2$ phase formation by reduction-diffusion (R-D) [36]. The activation energy corresponding to the first two peaks were 96 kJ mol$^{-1}$ (Fe and B formation) and 409 kJ mol$^{-1}$ (NdH$_2$ formation), respectively. The activation energy of NdH$_2$ formation from Nd$_2$O$_3$ and NdFeO$_3$ was higher than the activation energy of Fe and B formation from Fe$_2$O$_3$ and B$_2$O$_3$, respectively, and that of Nd$_3$Fe$_{17}$ phase formation.

4. Conclusions

Isochronal and isothermal DSC, XRD and TEM analyses were used to study the Nd$_2$Fe$_{14}$B phase formation from Nd–Fe–B oxide powders produced by the sol–gel technique.
1. Reduction–diffusion (R–D) was a three-step process: (a) reduction of Fe₂O₃ and B₂O₃ to form Fe and B at 300°C, (b) reduction of Nd₂O₃ and NdFeO₃ to form NdH₂ and Fe at 620°C and (c) Nd₂Fe₁₄B phase formation at 692°C.

2. Nd₂Fe₁₄B phase formation was combination of two parallel competing reactions: (a) by direct combination of NdH₂, Fe and B and (b) formation of Nd₂Fe₁₇ from NdH₂ and Fe, followed by Nd₂Fe₁₄B phase formation by reaction of Nd₂Fe₁₇ with B.

3. Addition of amorphous boron to Nd–Fe–B oxide during reduction resulted in increased Nd₂Fe₁₄B mass percentage at the cost of Nd₂Fe₁₇ phase and improved magnetic properties; the coercivity increased from 500 to 700 kA m⁻¹ and magnetization increased from 160 to 196 kA m⁻¹.

4. The activation energy E_a was found to be 365 kJ mol⁻¹ for Nd₂Fe₁₄B phase formation.

5. The activation energy corresponding to α-Fe formation and NdH₂ formation was at 96 kJ mol⁻¹ and 409 kJ mol⁻¹, respectively.

6. The heat treatment temperature and time for maximum Nd₂Fe₁₄B phase formation were found to be 800°C and 90 min, respectively.

Acknowledgment

The authors are grateful to the SERC, Singapore for financial support for this work through ASTAR Grant no: 062 101 0032.

References