Notes on Financial Risk and Analytics

This version: January 15, 2020
https://www.ntu.edu.sg/home/nprivault/index.html
Preface

The topics covered in these notes include an introduction to stochastic modeling with discrete-valued stochastic processes, a basic coverage of Value at Risk and expected shortfall, as well as structures of random dependence. Various types of risk Gourieroux and Jasiak (2001) can be classified into market risk, liquidity risk, credit risk, counterparty risk, model risk, estimation risk. For insurance businesses, a more detailed classification can be set as follows.

a) Financial risk
 - Investment risk
 - Credit risk,
 - Market risk \((e.g.\) depreciation),
 - Counterparty risk.
 - Liability risk
 - Catastrophe risk,
 - Non-catastrophe risk \((e.g.\) claim volatility).

b) Operational risk
 - Business risk \((e.g.\) lower production),
 - Event risk \((e.g.\) system failure).

Financial, investment, market and non-catastrophe risks are covered in Chapters 1, 3 and 4 on time series, Value at Risk and expected shortfall.

Credit risk is covered in Chapters 6, 7 and 8 on the structural and reduced-form approaches to credit risk and valuation, which require a basic knowledge of stochastic calculus in continuous time. Credit default is treated via defaultable bonds, Credit Default Swaps (CDS) and collateralized debt obligations (CDOs).

Chapter 9 is devoted to credit scoring, using discriminant analysis and logistic regression. Liability, catastrophe and operational risks such as business or event risk are covered in Chapter 2 on risk theory. Basic risk Theory and
credit scoring are presented with illustrative examples in R.

This material has been used for teaching in the Masters of Science in Financial Engineering (MFE) and in Analytics (MSA) at the Nanyang Technological University in Singapore. The pdf file contains external links and 90 figures, including 2 animated figures that may require using Acrobat Reader for viewing on the complete pdf file.

This text also includes 41 exercises with solutions. Clicking on an exercise number inside the solution section will send to the original problem text inside the file. Conversely, clicking on the problem number sends the reader to the corresponding solution, however this feature should not be misused.

Nicolas Privault

2020
Contents

1 Time Series .. 1
 1.1 Autoregressive Moving Average (ARMA) 1
 1.2 Autoregressive Integrated Moving Average 7
 1.3 Time Series Stationarity 10
 1.4 Fitting Time Series to Financial Data 16
 1.5 Application: Pair Trading 19
Exercises ... 26

2 Insurance Risk ... 29
 2.1 The Poisson Process .. 29
 2.2 Compound Poisson Process 37
 2.3 Claim and Reserve Processes 42
 2.4 Ruin Probabilities .. 43
Exercises ... 49

3 Value at Risk .. 51
 3.1 Financial Data with R 51
 3.2 Risk Measures ... 52
 3.3 Quantile Risk Measures 55
 3.4 Value at Risk (VaR) ... 59
Exercises ... 66

4 Expected Shortfall .. 69
 4.1 Tail Value at Risk (TVaR) 69
 4.2 Conditional tail expectation (CTE) 70
 4.3 Expected Shortfall (ES) 74
 4.4 Gaussian Measures of Risk vs Market Returns 81
Exercises ... 85
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>MA(2) samples</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>AR(2) samples</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>ARMA(2) samples</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>ARIMA(1, 2, 3) samples</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>Autocovariances of AR(2) samples</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>Nonstationary AR(2) time series with $a_1 = 1$ and $a_2 = -1$</td>
<td>12</td>
</tr>
<tr>
<td>1.7</td>
<td>Hypothesis testing</td>
<td>15</td>
</tr>
<tr>
<td>1.8</td>
<td>Stock returns</td>
<td>16</td>
</tr>
<tr>
<td>1.9</td>
<td>ARIMA(2, 0, 2) samples</td>
<td>17</td>
</tr>
<tr>
<td>1.10</td>
<td>ARIMA(0, 0, 3) samples</td>
<td>18</td>
</tr>
<tr>
<td>1.11</td>
<td>Cumulative stock returns</td>
<td>18</td>
</tr>
<tr>
<td>1.12</td>
<td>ARIMA(2, 1, 2) samples</td>
<td>19</td>
</tr>
<tr>
<td>1.13</td>
<td>MSFT vs APPL graphs</td>
<td>20</td>
</tr>
<tr>
<td>1.14</td>
<td>Comparison graph before linear regression</td>
<td>20</td>
</tr>
<tr>
<td>1.15</td>
<td>Comparison graph after linear regression</td>
<td>21</td>
</tr>
<tr>
<td>1.16</td>
<td>Spread graph</td>
<td>22</td>
</tr>
<tr>
<td>1.17</td>
<td>Pair trading signal</td>
<td>23</td>
</tr>
<tr>
<td>1.18</td>
<td>Pair trading returns</td>
<td>24</td>
</tr>
<tr>
<td>1.19</td>
<td>Performance of pair trading</td>
<td>25</td>
</tr>
<tr>
<td>1.20</td>
<td>Pair trading algorithm</td>
<td>25</td>
</tr>
<tr>
<td>2.1</td>
<td>Sample path of a Poisson process $(N_t){t \in \mathbb{R}+}$</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Sample path of the Poisson process $(N_t){t \in \mathbb{R}+}$</td>
<td>36</td>
</tr>
<tr>
<td>2.3</td>
<td>Sample path of the compensated Poisson process $(N_t - \lambda t){t \in \mathbb{R}+}$</td>
<td>36</td>
</tr>
<tr>
<td>2.4</td>
<td>Sample path of a compound Poisson process $(Y_t){t \in \mathbb{R}+}$</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Sample path (without ruin) of a risk process $(R_x(t)){t \in \mathbb{R}+}$</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>Sample path (with ruin) of a risk process $(R_x(t)){t \in \mathbb{R}+}$</td>
<td>43</td>
</tr>
<tr>
<td>2.7</td>
<td>Sample paths of reserve process*</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Cumulative stock returns</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Stock returns</td>
<td>52</td>
</tr>
</tbody>
</table>
3.3 Estimating liabilities by a conditional mean over 346 returns 53
3.4 Gaussian Cumulative distribution function* 56
3.5 Cumulative distribution function with jumps* 57
3.6 Gaussian quantile $q_p^Z = 1.644854$ at $p = 0.95$ 57
3.7 Exponential quantile $q_p^X = 2.995732$ at $p = 0.95$ 58
3.8 Example of quantiles given as percentiles 58
3.9 Empirical cumulative distribution function 59
3.10 Symmetric and nonsymmetric VaR 62
3.11 Cumulative distribution function 63
3.12 Cumulative distribution function 64
3.13 Cumulative distribution function 67

4.1 Two distributions having the same Value at Risk $V_X^{95\%} = 2.145$ 69
4.2 Value at Risk and Conditional Tail Expectation 73
4.3 Value at Risk and Expected Shortfall 80
4.4 Value at Risk vs Expected Shortfall 80
4.5 Market returns vs normalized Gaussian returns 81
4.6 Empirical density vs normalized Gaussian density 82
4.7 Empirical density vs power density 82
4.8 Historical vs Gaussian estimates of Value at Risk 83
4.9 Quantile function .. 84
4.10 Cumulative distribution function 86
4.11 Cumulative distribution function 87

5.1 Joint Gaussian probability density 91
5.2 Different Gaussian copula graphs 96
5.3 Different Gaussian copula density graphs 97
5.4 Samples with uniform marginals and given copulas 99
5.5 Samples with Gaussian marginals and given copulas 100
5.6 Joint densities with Gaussian marginals and given copulas 100
5.7 Joint density contour plots with Gaussian marginals and given copulas 101
5.8 Samples with exponential marginals and given copulas 102
5.9 Truncated two-dimensional Gaussian density 103

6.1 Function $x \mapsto \Phi(\Phi^{-1}(x) + (\mu - r)\sqrt{T-t}/\sigma)$ 108

8.1 A representation of CDO tranches 138
8.2 A Titanic-style representation of cumulative tranche losses 139
8.3 Function $f_k(x) = \min((x - N\alpha_{k-1})^+, Np_k)$ 141
8.4 Internal Ratings-Based formula 143

9.1 Probability default curve $x \mapsto \mathbb{P}(B \mid X = x)$ 151
9.2 Probability acceptance curve $x \mapsto \mathbb{P}(G \mid X = x)$ 152
9.3 Animated graph of optimal decision rule* 155
9.4 Logistic function ... 157
9.5 Logistic regression output on 5 criteria 158
Notes on Financial Risk and Analytics

9.6 Logistic regression output on 61 criteria ... 159
9.7 Gaussian ROC curves .. 161
9.8 ROC curves based on 5 criteria and 61 criteria 162
10.9 Probability computed as a volume integral .. 178

S.1 Pareto cumulative and probability density functions 207
S.2 Cumulative distribution function ... 208
S.3 Value at Risk and Expected Shortfall for small data 211
S.4 Cumulative distribution function ... 212
S.5 Cumulative distribution function ... 213
S.6 Cumulative distribution function ... 213
S.7 Exponential copula function $u, v \mapsto C(u, b)$ 217
S.8 Survival copula graph ... 221
S.9 Survival copula density graph ... 222
S.10 Cashflow data .. 230
S.11 CDS price data .. 231
S.12 CDS data ... 232

* Animated figures (work in Acrobat Reader).

This version: January 15, 2020
https://www.ntu.edu.sg/home/nprivault/index.html
List of Tables

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Summary of Risk Measures</td>
<td>84</td>
</tr>
<tr>
<td>7.1</td>
<td>Mortality table</td>
<td>120</td>
</tr>
<tr>
<td>7.2</td>
<td>Cumulative historic default rates</td>
<td>128</td>
</tr>
<tr>
<td>11.1</td>
<td>CDS data</td>
<td>230</td>
</tr>
<tr>
<td>11.2</td>
<td>Spread and survival probabilities</td>
<td>232</td>
</tr>
</tbody>
</table>