Chapter 6
Structural Approach to Credit Risk

The structural approach to credit risk modeling focuses on modeling bankruptcy from a firm’s asset value, in contrast to the reduced form approach in which default probabilities are modeled as stochastic processes. Here, the credit default event occurs when the assets of a firm drop below a certain pre-defined level. This chapter also considers the modeling of correlation and dependence between multiple default times.

6.1 Merton Model

The Merton (1974) credit risk model reframes corporate debt as an option on a firm’s underlying value. Precisely the value \(S_t \) of a firm’s asset is modeled by a geometric Brownian motion

\[
dS_t = \mu S_t dt + \sigma S_t dB_t
\]

under the historical (or physical) measure \(\mathbb{P} \). Recall that \(S_t \) is modeled as

\[
dS_t = r S_t dt + \sigma S_t d\hat{B}_t
\]

under the risk-neutral probability measure \(\mathbb{P}^* \). The company debt is represented by an amount \(K \) in bonds to be paid at maturity \(T \), cf. § 4.1 of Grasselli and Hurd (January 3, 2010).

Default occurs if \(S_T < K \) with probability \(\mathbb{P}(S_T < K) \), the bond holder will receive the recovery value \(S_T \). Otherwise, if \(S_T \geq K \) the bond holder...
receives K and the equity holder is entitled to receive $S_T - K$, which can be represented as $(S_T - K)^+$ in general.

Proposition 6.1. The default probability $\mathbb{P}(S_T < K \mid \mathcal{F}_t)$ can be computed from the lognormal distribution of S_T as

$$
\mathbb{P}(S_T < K \mid \mathcal{F}_t) = \Phi\left(\frac{-(\mu - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma \sqrt{T-t}}\right),
$$

where Φ is the cumulative distribution function of the standard normal distribution, and

$$
d^\mu := \frac{(\mu - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma \sqrt{T-t}}.
$$

Proof. The default probability $\mathbb{P}(S_T < K \mid \mathcal{F}_t)$ can be computed from the lognormal distribution of S_T as

$$
\begin{align*}
\mathbb{P}(S_T < K \mid \mathcal{F}_t) &= \mathbb{P}(S_0 e^{\sigma B_T + (\mu-\sigma^2/2)T} < K \mid \mathcal{F}_t) \\
 &= \mathbb{P}(B_T < (-\mu - \sigma^2/2)T + \log(K/S_0))/\sigma \mid \mathcal{F}_t) \\
 &= \mathbb{P}(B_T - B_t + y < (-\mu - \sigma^2/2)T + \log(K/S_0))/\sigma)_{y=B_t} \\
 &= \frac{1}{\sqrt{2(T-t)\pi}} \int_{-\infty}^{(-\mu - \sigma^2/2)(T-t) + \log(K/S_t))/\sigma e^{-x^2/(2(T-t))} dx \\
 &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(-\mu - \sigma^2/2)(T-t) + \log(K/S_t))/\sigma \sqrt{T-t} e^{-x^2/2} dx \\
 &= 1 - \Phi\left(\frac{(\mu - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma \sqrt{T-t}}\right) \\
 &= 1 - \Phi(d^\mu) \\
 &= \Phi(-d^\mu) \\
 &= \Phi\left(\frac{-(\mu - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma \sqrt{T-t}}\right).
\end{align*}
$$

\Box

Note that under the risk-neutral probability measure \mathbb{P}^* we have, replacing μ with r,

$$
\mathbb{P}^*(S_T < K \mid \mathcal{F}_t) = \Phi(-d^r),
$$

with

$$
d^r = \frac{(r - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma \sqrt{T-t}},
$$

which implies the relation

$$
d^r = d^\mu - \frac{\mu - r}{\sigma} \sqrt{T-t}.$$
or

\[
\Phi^{-1}(\mathbb{P}(S_T < K \mid \mathcal{F}_t)) = -\frac{\mu - r}{\sigma} \sqrt{T - t} + \Phi^{-1}(\mathbb{P}^*(S_T < K \mid \mathcal{F}_t)).
\]

The probability of default of the firm at a time \(\tau \) before \(T \) can be defined as the probability that the level of its assets falls below the level \(K \) at time \(T \). In this case the conditional distribution of \(\tau \) is given by

\[
\mathbb{P}(\tau < T \mid \mathcal{F}_t) := \mathbb{P}(S_T < K \mid \mathcal{F}_t)
= \Phi \left(-\frac{(\mu - \sigma^2/2)(T - t) + \log(S_t/K))}{\sigma \sqrt{T - t}} \right), \quad T \geq t.
\]

We also have

\[
\mathbb{P}(\tau < T \mid \mathcal{F}_t) = \mathbb{P}(S_T < K \mid \mathcal{F}_t)
= \Phi \left(\Phi^{-1}(\mathbb{P}^*(S_T < K \mid \mathcal{F}_t)) - \frac{\mu - r}{\sigma} \sqrt{T - t} \right)
= \Phi \left(\Phi^{-1}(\mathbb{P}^*(\tau < T \mid \mathcal{F}_t)) - \frac{\mu - r}{\sigma} \sqrt{T - t} \right)
\]

and

\[
\mathbb{P}^*(\tau < T \mid \mathcal{F}_t) = \mathbb{P}^*(S_T < K \mid \mathcal{F}_t)
= \Phi \left(-\frac{(r - \sigma^2/2)(T - t) + \log(S_t/K))}{\sigma \sqrt{T - t}} \right)
= \Phi \left(\Phi^{-1}(\mathbb{P}(S_T < K \mid \mathcal{F}_t)) + \frac{\mu - r}{\sigma} \sqrt{T - t} \right)
= \Phi \left(\Phi^{-1}(\mathbb{P}(\tau < T \mid \mathcal{F}_t)) + \frac{\mu - r}{\sigma} \sqrt{T - t} \right). \quad (6.2)
\]

Note that when \(\mu < r \) we have

\[
\mathbb{P}(\tau < T \mid \mathcal{F}_t) > \mathbb{P}^*(\tau < T \mid \mathcal{F}_t),
\]

whereas when \(\mu > r \) we get

\[
\mathbb{P}(\tau < T \mid \mathcal{F}_t) < \mathbb{P}^*(\tau < T \mid \mathcal{F}_t),
\]

as illustrated in the next Figure 6.1.
Fig. 6.1: Function $x \mapsto \Phi \left(\Phi^{-1}(x) - (\mu - r)\sqrt{T}/\sigma \right)$ for $\mu > r$, $\mu = r$, and $\mu < r$.

The discounted expected cash flow $e^{-(T-t)r} \mathbb{E}^* \left[(S_T - K)^+ \mid \mathcal{F}_t \right]$ received by the equity holder can be estimated at time $t \in [0, T]$ as the price of a European call option from the Black-Scholes formula

$$e^{-(T-t)r} \mathbb{E}^* \left[(S_T - K)^+ \mid \mathcal{F}_t \right] = S_t \Phi \left(\frac{(r + \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma \sqrt{T-t}} \right) - Ke^{-(T-t)r} \Phi \left(\frac{(r - \sigma^2/2)(T-t) + \log(S_t/K)}{\sigma \sqrt{T-t}} \right), \quad 0 \leq t \leq T.$$

In the following proposition we price at time $t \in [0, T]$ the amount $\min(S_T, K)$ received by the bond holder (or junior creditor) at maturity, based on the recovery value S_T. This price can interpreted at the price $P(t, T)$ at time $t \in [0, T]$ of a default bond with face value 1, maturity T and recovery value $\min(S_T/K, 1)$.

Proposition 6.2. The amount received by the bond holder (or junior creditor) at maturity is priced at time $t \in [0, T]$ as

$$e^{-(T-t)r} \mathbb{E}^* \left[\min(S_T, K) \mid \mathcal{F}_t \right] = Ke^{-(T-t)r} \Phi(d^-_+) - S_t \Phi(-d^+_+), \quad 0 \leq t \leq T.$$

Proof. Using the Black-Scholes put option pricing formula we have

$$e^{-(T-t)r} \mathbb{E}^* \left[\min(S_T, K) \mid \mathcal{F}_t \right] = e^{-(T-t)r} K - e^{-(T-t)r} \mathbb{E}^* \left[(K - S_T)^+ \mid \mathcal{F}_t \right] = e^{-(T-t)r} K - (S_t \Phi(-d^+_+) - Ke^{-(T-t)r} \Phi(-d^-_+)) = Ke^{-(T-t)r} \Phi(d^-_+) - S_t \Phi(-d^+_+). \quad \square$$

Writing

$$P(t, T) = e^{-(T-t)y_{t,T}} = \frac{1}{K} e^{-(T-t)r} \mathbb{E}^* \left[\min(S_T, K) \mid \mathcal{F}_t \right]$$
\[
= e^{-(T-t)r} \Phi(d_r^-) - \frac{S_t}{K} \Phi(-d_r^+),
\]
gives the default bond yield
\[
y_{t,T} = -\frac{1}{T-t} \log(P(t,T)) = -\frac{1}{T-t} \log \left(e^{-(T-t)r} \mathbb{E}^* \left[\min \left(1, \frac{S_T}{K} \right) \mid \mathcal{F}_t \right] \right)
\]
\[
= r - \frac{1}{T-t} \log \left(\mathbb{E}^* \left[\min \left(1, \frac{S_T}{K} \right) \mid \mathcal{F}_t \right] \right)
\]
\[
= r - \frac{1}{T-t} \log \left(\frac{1}{K} \mathbb{E}^* \left[\min (K, S_T) \mid \mathcal{F}_t \right] \right)
\]
\[
= r - \frac{1}{T-t} \log \left(\Phi(d_r^-) - \frac{S_t}{K} e^{(T-t)r} \Phi(-d_r^+) \right)
\]
\[
> r.
\]

6.2 Black-Cox Model

In the Black and Cox (1976) model the firm has to maintain an account balance above the level \(K \) throughout time, therefore default occurs at the first time the process \(S_t \) hits the level \(K \), cf. § 4.2 of Grasselli and Hurd (January 3, 2010). The default time \(\tau_K \) is therefore the first hitting time

\[
\tau_K := \inf \left\{ t \geq 0 : S_t := S_0 e^{\sigma B_t + (\mu - \sigma^2/2)t} \leq K \right\},
\]
of the level \(K \) by

\[
(S_t)_{t \in \mathbb{R}^+} = (S_0 e^{\sigma B_t + (\mu - \sigma^2/2)t})_{t \in \mathbb{R}^+},
\]
after starting from \(S_0 > K \).

Proposition 6.3. The probability distribution function of the default time \(\tau_K \) is given by

\[
\mathbb{P}(\tau_K \leq T) = \mathbb{P}(S_T \leq K) + \left(\frac{S_0}{K} \right)^{1-2\mu/\sigma^2} \Phi \left(\frac{\log(K/S_0) + (\mu - \sigma^2/2)T}{\sigma \sqrt{T}} \right),
\]

with \(S_0 \geq K \).

Proof. By e.g. Corollary 7.2.2 and pages 297-299 of Shreve (2004), or from Relation (8.7) in Privault (2014), we have
\[\mathbb{P}(\tau_K \leq T) = \mathbb{P}\left(\min_{t \in [0, T]} S_t \leq K \right) \]
\[= \mathbb{P}\left(\min_{t \in [0, T]} e^{\sigma B_t + (\mu - \sigma^2/2)t} \leq \frac{K}{S_0} \right) \]
\[= \mathbb{P}\left(\min_{t \in [0, T]} \left(B_t + \frac{(\mu - \sigma^2/2)t}{\sigma} \right) \leq \frac{1}{\sigma} \log \left(\frac{K}{S_0} \right) \right) \]
\[= \Phi \left(\frac{\log(K/S_0) - (\mu - \sigma^2/2)T}{\sigma \sqrt{T}} \right) \]
\[+ \left(\frac{S_0}{K} \right)^{1-2\mu/\sigma^2} \Phi \left(\frac{\log(K/S_0) + (\mu - \sigma^2/2)T}{\sigma \sqrt{T}} \right) \]
\[\tag{6.3} \]

with \(S_0 \geq K \).

The cash flow

\[(S_T - K)^+ \mathbb{1}_{\{\tau_K > T\}} = (S_T - K)^+ \mathbb{1}_{\left\{ \min_{t \in [0, T]} S_t > K \right\}} \]

received at maturity \(T \) by the equity holder can be priced at time \(t \in [0, T] \) as a down-and-out barrier call option with strike price \(K \) and barrier level \(K \) is priced in the next proposition.

Proposition 6.4. We have

\[\mathbb{E}^* \left[(S_T - K)^+ \mathbb{1}_{\left\{ \min_{0 \leq t \leq T} S_t > K \right\}} \bigg| \mathcal{F}_t \right] = \mathbb{1}_{\left\{ \min_{t \in [0, T]} S_t > B \right\}} g(t, S_t), \]

\(t \in [0, T], \) where

\[g(t, S_t) = BS_c(S_t, r, T - t, \sigma, K) - S_t \left(\frac{K}{S_t} \right)^{2r/\sigma^2} BS_c(K/S_t, r, T - t, \sigma, 1), \]

\(0 \leq t \leq T. \)

Proof. By e.g. Chapter 8 in Privault (2014), as

\[\mathbb{E}^* \left[(S_T - K)^+ \mathbb{1}_{\left\{ \min_{0 \leq t \leq T} S_t > K \right\}} \bigg| \mathcal{F}_t \right] = \mathbb{1}_{\left\{ \min_{t \in [0, T]} S_t > B \right\}} g(t, S_t), \]

\(t \in [0, T], \) where
The probabilities \(\mathbb{P}^*(\tau_K \leq u \mid \mathcal{F}_t) \) and \(\mathbb{P}^*(\tau_K > T \mid \mathcal{F}_t) = 1 - \mathbb{P}^*(\tau_K \leq T \mid \mathcal{F}_t) \) above can be computed from (6.3) as

\[
\mathbb{P}^*(\tau_K \leq u \mid \mathcal{F}_t) = \Phi \left(\frac{\log (K/S_t) - (r - \sigma^2/2)(u-t)}{\sigma \sqrt{u-t}} \right)
\]
\[
\frac{\left(\frac{S_t}{K}\right)^{1-2r/\sigma^2}}{\Phi\left(\frac{\log\left(\frac{S_t}{K}\right) + (r - \sigma^2/2)(u-t)}{\sigma\sqrt{u-t}}\right)}
\]

\[
= \mathbb{P}(S_u \leq K \mid \mathcal{F}_t) + \frac{\left(\frac{S_t}{K}\right)^{1-2r/\sigma^2}}{\Phi\left(\frac{\log\left(\frac{S_t}{K}\right) + (r - \sigma^2/2)(u-t)}{\sigma\sqrt{u-t}}\right)},
\]

with \(S_t \geq K\) and \(u > t\), from which the probability density function of the hitting time \(\tau_K\) can be estimated by differentiation with respect to \(u > t\). Note also that we have

\[
\mathbb{P}^*(\tau_K < \infty \mid \mathcal{F}_t) = \lim_{u \to \infty} \mathbb{P}^*(\tau_K \leq u \mid \mathcal{F}_t) = \begin{cases}
\left(\frac{K}{S_t}\right)^{-1+2r/\sigma^2} & \text{if } r > \sigma^2/2 \\
1 & \text{if } r \leq \sigma^2/2.
\end{cases}
\]

6.3 Correlated Default Times

In order to model correlated default and possible “domino effects”, one can regard two given default times \(\tau_1\) and \(\tau_2\) are correlated random variables.

Namely, given \(\tau_1\) and \(\tau_2\) two default times we can consider the correlation

\[
\rho = \frac{\text{Cov}(\tau_1, \tau_2)}{\sqrt{\text{Var}[\tau_1] \text{Var}[\tau_2]}} \in [-1, 1].
\]

When trying to build a dependence structure for the default times \(\tau_1\) and \(\tau_2\), the idea of Li (2000) is to use the normalized Gaussian copula \(C_\Sigma(x, y)\), with

\[
\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix},
\]

with correlation parameter \(\rho \in [-1, 1]\), and to model the joint default probability \(\mathbb{P}(\tau_1 \leq T \text{ and } \tau_2 \leq T)\) as

\[
\mathbb{P}(\tau_1 \leq T \text{ and } \tau_2 \leq T) := C_\Sigma(\mathbb{P}(\tau_1 \leq T), \mathbb{P}(\tau_2 \leq T)),
\]

where \(C_\Sigma\) is given by (5.4). Given two default events \(A = \{\tau_1 \leq T\}\) and \(B = \{\tau_2 \leq T\}\) with probabilities

\[
\mathbb{P}(\tau_1 \leq T) = 1 - \exp\left(-\int_0^T \lambda_1(s)ds\right) \quad \text{and} \quad \mathbb{P}(\tau_2 \leq T) = 1 - \exp\left(-\int_0^T \lambda_2(s)ds\right)
\]

we can also define the default correlation \(\rho_D \in [-1, 1]\) as
\[\rho^D = \frac{\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)}{\sqrt{\mathbb{P}(A)(1 - \mathbb{P}(A))}\sqrt{\mathbb{P}(B)(1 - \mathbb{P}(B))}} \]
\[= \frac{C_\Sigma(\mathbb{P}(\tau_1 \leq T), \mathbb{P}(\tau_2 \leq T)) - \mathbb{P}(\tau_1 \leq T)\mathbb{P}(\tau_2 \leq T)}{\sqrt{\mathbb{P}(\tau_1 \leq T)(1 - \mathbb{P}(\tau_1 \leq T))}\sqrt{\mathbb{P}(\tau_2 \leq T)(1 - \mathbb{P}(\tau_2 \leq T))}}. \]

(6.4)

In this case, the default correlation \(\rho^D \) in (6.4) can be written as

When the default probabilities are specified in the Merton model of credit risk as

\[\mathbb{P}(\tau_i \leq T) = \mathbb{P}(S_T < K) \]

\[= \mathbb{P}\left(e^{\sigma_i B_T + (\mu_i - \sigma^2_i/2)T} < \frac{K}{S_0}\right) \]

\[= \mathbb{P}\left(B_T \leq -\frac{(\mu_i - \sigma^2_i/2)T}{\sigma_i} + \frac{1}{\sigma_i} \log \frac{K}{S_0}\right) \]

\[= \Phi\left(\frac{\log(K/S_0) - (\mu_i - \sigma^2_i/2)T}{\sigma_i \sqrt{T}}\right), \quad i = 1, 2, \]

the default correlation \(\rho^D \) becomes

\[\rho^D = \frac{\mathbb{P}(\tau_1 \leq T \text{ and } \tau_2 \leq T) - \mathbb{P}(\tau_1 \leq T)\mathbb{P}(\tau_2 \leq T)}{\sqrt{\mathbb{P}(\tau_1 \leq T)(1 - \mathbb{P}(\tau_1 \leq T))}\sqrt{\mathbb{P}(\tau_2 \leq T)(1 - \mathbb{P}(\tau_2 \leq T))}} \]

\[= \Phi_\Sigma\left(\frac{\log(S_0/K) + (\mu_1 - \sigma^2_1/2)T}{\sigma_1 \sqrt{T}}, \frac{\log(S_0/K) + (\mu_2 - \sigma^2_2/2)T}{\sigma_2 \sqrt{T}}\right) - \mathbb{P}(\tau_1 \leq T)\mathbb{P}(\tau_2 \leq T) \]

\[\sqrt{\mathbb{P}(\tau_1 \leq T)(1 - \mathbb{P}(\tau_1 \leq T))}\sqrt{\mathbb{P}(\tau_2 \leq T)(1 - \mathbb{P}(\tau_2 \leq T))}. \]

In [Li (2000)] it was suggested to use a single average correlation estimate, see (8.1) page 82 of the Credit Metrics Technical Document Gupton et al. (1997), and also the Appendix F therein.

It is worth noting that the outcomes of this methodology have been discussed in a number of magazine articles in recent years, to name a few:

“Recipe for disaster: the formula that killed Wall Street”, Wired Magazine, by F. Salmon (2009);

“The formula that felled Wall Street”, Financial Times Magazine, by S. Jones (2009);

“Formula from hell”, Forbes.com, by S. Lee (2009),

\(\odot \)
see also here.

On the other hand, a more proper definition of the default correlation ρ^D should be

$$
\rho^D := \frac{\mathbb{P}(\tau_1 \leq T \text{ and } \tau_2 \leq T) - \mathbb{P}(\tau_1 \leq T)\mathbb{P}(\tau_2 \leq T)}{\sqrt{\mathbb{P}(\tau_1 \leq T)(1 - \mathbb{P}(\tau_1 \leq T))}\sqrt{\mathbb{P}(\tau_2 \leq T)(1 - \mathbb{P}(\tau_2 \leq T))}},
$$

which requires the actual computation of the joint default probability $\mathbb{P}(\tau_1 \leq T \text{ and } \tau_2 \leq T)$. An exact expression for this joint default probability in the first passage time Black-Cox model, and the associated correlation, have been recently obtained in Li and Krehbiel (2016).

Multiple default times

Consider now a sequence $(\tau_k)_{k=1,2,...,n}$ of random default times and, for more flexibility, a standardized random variable M with probability density function $\phi(m)$ and variance $\text{Var}[M] = 1$.

As in the Merton (1974) model, cf. § 6.1, a common practice, see Vašíček (1987), Gibson (2004), Hull and White (2004) is to parametrize the default probability associated to each τ_k by the conditioning

$$
\mathbb{P}(\tau_k \leq T \mid M = m) = \Phi \left(\frac{\Phi^{-1}(\mathbb{P}(\tau_k \leq T)) - a_k m}{\sqrt{1 - a_k^2}} \right), \quad k = 1, 2, \ldots, n,
$$

see (6.2), where $a_k \in (-1, 1)$, $k = 1, 2, \ldots, n$. Note that we have

$$
\mathbb{P}(\tau_k \leq T) = \int_{-\infty}^{\infty} \mathbb{P}(\tau_k \leq T \mid M = m)\phi(m)dm
$$

$$
= \int_{-\infty}^{\infty} \Phi \left(\frac{\Phi^{-1}(\mathbb{P}(\tau_k \leq T)) - a_k m}{\sqrt{1 - a_k^2}} \right)\phi(m)dm, \quad (6.6)
$$

and $\phi(m)$ can be typically chosen as a standard normal Gaussian probability density function.

Next, we present a dependence structure which implements of the Gaussian copula correlation method Li (2000) in the case of multiple default times.

Definition 6.6. Given n Gaussian samples X_1, X_2, \ldots, X_n defined as

$$
X_k := a_k M + \sqrt{1 - a_k^2} Z_k, \quad k = 1, 2, \ldots, n,
$$

(6.7)
conditionally to \(M \), where \(Z_1, Z_2, \ldots, Z_n \) are normal random variables with same cumulative distribution function \(\Phi \), independent of \(M \), we let the correlated default times \((\tau_1, \ldots, \tau_n)\) be defined as

\[
\tau_k := F_{\tau_k}^{-1}(\Phi(X_k)), \quad k = 1, 2, \ldots, n, \tag{6.8}
\]

In the next proposition we compute the joint distribution of the default times \((\tau_1, \ldots, \tau_n)\) according to the above dependence structure.

Proposition 6.7. The default times \((\tau_k)_{k=1,2,\ldots,n}\) have the joint distribution

\[
P(\tau_1 \leq y_1, \ldots, \tau_n \leq y_n) = C(P(\tau_1 \leq y_1), \ldots, P(\tau_n \leq y_n)),
\]

where

\[
C(x_1, \ldots, x_n) := \int_{-\infty}^{\infty} \Phi \left(\frac{\Phi^{-1}(x_1) - a_1 m}{\sqrt{1 - a_1^2}} \right) \cdots \Phi \left(\frac{\Phi^{-1}(x_n) - a_n m}{\sqrt{1 - a_n^2}} \right) \phi(m) dm,
\]

\(x_1, x_2, \ldots, x_n \in [0, 1]\), is a Gaussian copula on \([0, 1]^n\) with covariance matrix

\[
\Sigma = \begin{bmatrix}
1 & a_1 a_2 & \cdots & a_1 a_{n-1} & a_1 a_n \\
& a_2 a_1 & 1 & \ddots & \vdots \\
& & \ddots & \ddots & \vdots \\
& & & \ddots & 1 & a_{n-1} a_n \\
& & & & a_n a_1 & a_n a_2 & \cdots & a_n a_{n-1} & 1
\end{bmatrix}. \tag{6.9}
\]

Proof. We start by recovering the conditional distribution (6.5) as follows:

\[
P(\tau_k \leq T \mid M = m) = P(F_{\tau_k}^{-1}(\Phi(X_k)) \leq T \mid M = m)
\]

\[
= P(\Phi(X_k) \leq F_{\tau_k}(T) \mid M = m)
\]

\[
= P(X_k \leq \Phi^{-1}(F_{\tau_k}(T)) \mid M = m)
\]

\[
= P\left(a_k m + \sqrt{1 - a_k^2} Z_k \leq \Phi^{-1}(F_{\tau_k}(T)) \right)
\]

\[
= P\left(\sqrt{1 - a_k^2} Z_k \leq \Phi^{-1}(F_{\tau_k}(T)) - a_k m \right)
\]

\[
= P\left(Z_k \leq \frac{1}{\sqrt{1 - a_k^2}} \left(\Phi^{-1}(F_{\tau_k}(T)) - a_k m \right) \right)
\]

\[
= \Phi\left(\frac{\Phi^{-1}(P(\tau_k \leq T)) - a_k m}{\sqrt{1 - a_k^2}} \right), \quad k = 1, 2, \ldots, n.
\]

This version: September 6, 2020

https://www.ntu.edu.sg/home/nprivault/index.html
Note that the above recovers the correct marginal distributions (6.6), i.e. we have

\[
\mathbb{P}(\tau_k \leq y_k) = \mathbb{P}(\tau_1 \leq \infty, \ldots, \tau_{k-1} \leq \infty, \tau_k \leq y_k, \tau_{k+1} \leq \infty, \ldots, \tau_n \leq \infty) \\
= \int_{-\infty}^{\infty} \Phi \left(\frac{\Phi^{-1}(\mathbb{P}(\tau_k \leq y_k)) - a_km}{\sqrt{1-a_k^2}} \right) \phi(m) dm \\
= \int_{-\infty}^{\infty} \mathbb{P}(\tau_k \leq T \mid M = m) \phi(m) dm, \quad k = 1, 2, \ldots, n.
\]

Knowing that, given the sample \(M = m \), the default times \(\tau_k, k = 1, 2, \ldots, n \), are independent random variables, we can compute the joint distribution

\[
\mathbb{P}(\tau_1 \leq y_1, \ldots, \tau_n \leq y_n \mid M = m) \\
= \mathbb{P}(\tau_1 \leq y_1 \mid M = m) \times \cdots \times \mathbb{P}(\tau_n \leq y_n \mid M = m),
\]

conditionally to \(M = m \). This yields

\[
\mathbb{P}(\tau_1 \leq y_1, \ldots, \tau_n \leq y_n) = \int_{-\infty}^{\infty} \mathbb{P}(\tau_1 \leq y_1, \ldots, \tau_n \leq y_n \mid M = m) \phi(m) dm \\
= \int_{-\infty}^{\infty} \mathbb{P}(\tau_1 \leq y_1 \mid M = m) \cdots \mathbb{P}(\tau_n \leq y_n \mid M = m) \phi(m) dm \\
= \int_{-\infty}^{\infty} \Phi \left(\frac{\Phi^{-1}(\mathbb{P}(\tau_1 \leq y_1)) - a_1m}{\sqrt{1-a_1^2}} \right) \cdots \Phi \left(\frac{\Phi^{-1}(\mathbb{P}(\tau_n \leq y_n)) - a_n m}{\sqrt{1-a_n^2}} \right) \phi(m) dm.
\]

In other words, we have

\[
\mathbb{P}(\tau_1 \leq y_1, \ldots, \tau_n \leq y_n) = C(\mathbb{P}(\tau_1 \leq y_1), \ldots, \mathbb{P}(\tau_n \leq y_n)),
\]

where the function

\[
C(x_1, \ldots, x_n) \\
:= \int_{-\infty}^{\infty} \Phi \left(\frac{\Phi^{-1}(x_1) - a_1 m}{\sqrt{1-a_1^2}} \right) \cdots \Phi \left(\frac{\Phi^{-1}(x_n) - a_n m}{\sqrt{1-a_n^2}} \right) \phi(m) dm,
\]

\(x_1, x_2, \ldots, x_n \in [0, 1] \), is a Gaussian copula on \([0, 1]^n\), built as

\[
C(x_1, \ldots, x_n) = F(\Phi^{-1}(x_1), \ldots, \Phi^{-1}(x_n)),
\]

from the Gaussian cumulative distribution function

\[
F(x_1, \ldots, x_n) := \int_{-\infty}^{\infty} \Phi \left(\frac{x_1 - a_1 m}{\sqrt{1-a_1^2}} \right) \cdots \Phi \left(\frac{x_n - a_n m}{\sqrt{1-a_n^2}} \right) \phi(m) dm.
\]
\[
\begin{align*}
&= \int_{-\infty}^{\infty} \mathbb{P}\left(Z_1 \leq \frac{x_1 - a_1 m}{\sqrt{1 - a_1^2}}\right) \cdots \mathbb{P}\left(Z_n \leq \frac{x_n - a_n m}{\sqrt{1 - a_n^2}}\right) \phi(m) \, dm \\
&= \int_{-\infty}^{\infty} \mathbb{P}(X_1 \leq x_1, \ldots, X_n \leq x_n \mid M = m) \phi(m) \, dm \\
&= \mathbb{P}(X_1 \leq x_1, \ldots, X_n \leq x_n), \quad 0 \leq x_1, x_2, \ldots, x_n \leq 1,
\end{align*}
\]

of the vector \((X_1, \ldots, X_n)\), with covariance matrix given by \((6.9)\). \(\square\)

Exercises

Exercise 6.1 Compute the conditional probability density function of the default time \(\tau\) defined in \((6.1)\).

Exercise 6.2 Credit Default Contract. The assets of a company are modeled using a geometric Brownian motion \((S_t)_{t \in \mathbb{R}_+}\) with drift \(r > 0\) under the risk-neutral probability measure \(\mathbb{P}^*\). A Credit Default Contract pays \$1 as soon as the asset \(S_t\) hits a level \(K > 0\). Price this contract at time \(t > 0\) assuming that \(S_t > K\).

Exercise 6.3

a) Check that the vector \((X_1, X_2, \ldots, X_n)\) defined in \((6.7)\) has the covariance matrix given by \((6.9)\).

b) Show that the vector \((X_1, X_2, \ldots, X_n)\), with covariance matrix \((6.9)\) has standard Gaussian marginals.

c) By computing explicitly the probability density function of \((X_1, \ldots, X_n)\), recover the fact that it is a jointly Gaussian random vector with covariance matrix \((6.9)\).

Exercise 6.4 Compute the inverse \(\Sigma^{-1}\) of the covariance matrix \((6.9)\) in case \(n = 2\).