Index

σ-algebra, 713
Markov property, 160
complement rule, 715

absence of arbitrage, 25, 541
abstract Bayes formula, 499
accreting swap, 579
adapted process, 145
adjusted close price, 198, 660
admissible portfolio strategy, 177
affine model, 534
affine PDE, 294, 535, 977
American
binary option
finite expiration, 490
perpetual, 490
forward contract, 492
option
call, 459, 469
dividend, 485, 487
finite expiration, 473
perpetual, 459
put, 459
amortizing swap, 579
annuity numéraire, 579, 613, 628
approximation
gamma, 555
lognormal, 423
arbitrage, 21
absence of, 25
continuous time, 177
discrete time, 56
opportunity, 23
price, 13, 38, 68, 78, 247
triangular, 21
arithmetic average, 414
Asian option, 413, 414, 416
basket, 429
call, 413
dividends, 442
hedging, 442
asset pricing
first theorem, 27
continuous time, 179, 583
discrete time, 67
second theorem, 32
continuous time, 182
discrete time, 68
at the money, 57, 260
attainable, 31, 37, 77, 182
Bachelier model, 188, 225, 230, 261
backward induction, 86, 88
backward stochastic differential equation, 266
Barone-Adesi & Whaley model, 484
barrier forward contract, 384
down-and-in
long, 384, 901
down-and-out
long, 384, 902
up-and-in
long, 384, 897
up-and-out
long, 384, 899
barrier level, 359
barrier option, 58, 355, 359
down-and-in
call, 360, 373
put, 360, 375
down-and-out
call, 360, 369, 383
put, 360, 371
in-out parity, 360
up-and-in
call, 360, 375
put, 360, 376
up-and-out
call, 360, 361
put, 360, 366
basis point, 621
basket option, 428
BDT model, 564
bear spread option, 259, 849
Bermudan swaption, 620
Bernoulli distribution, 726
Bessel function, 532, 554
BGM model, 595, 610
binary option, 57, 116, 229, 262, 525, 771
barrier, 385
tree, 69
binary option
American
finite expiration, 490
perpetual, 490
binomial distribution, 726
bisection method, 228, 309
bizdays (R package), 216
Black (1976) formula, 611
caplet formula, 610
Black-Derman-Toy model, 564
Black-Scholes calibration, 313
formula, 223, 227, 249, 512, 596
call option, 202, 611
put option, 210, 612
PDE, 200, 222, 228, 380, 383, 704
with jumps, 687
bond convertible, 560
convexity, 565
duration, 561, 565
immunization, 980
ladder, 613
option, 523, 607, 966
pricing PDE, 543, 593
yield, 551
zero-coupon, 540
Borel-Cantelli, 171
boundary condition, 705
brake-even rate, 578, 580
strike price, 45
underlying asset price, 86, 215
Bretton Woods, 509
bridge model, 598
Brownian bridge, 166, 557
extrema, 347
motion, 129
geometric, 238
Lévy’s construction, 136, 168, 826
series construction, 134, 137
BSDE, 266
bull spread option, 259, 849
business time, 216
buy back guarantee, 7
calendar time, 216
call price, 360
call level, 359
call option, 8
call spread collar option, 118
call-put parity, 211, 251, 265, 322, 512, 908
callable
bear contract, 59, 359, 360
bull contract, 360
Cantor function, 333
cap pricing, 612
Capital Asset Pricing Model (CAPM), 268, 871
caplet pricing, 609
cash settlement, 13, 56, 209
cash-or-nothing option, 57, 525
cattle futures, 202
Cauchy distribution, 723
sequence, 812
CBBC, 59, 359, 360
CBOE, 531
Volatility Index®, 323
CEV model, 534
change of measure, 243
change of numéraire, 498, 512
characteristic function, 743
Chasles relation, 151
Chi square distribution, 261, 532, 858
Chicago Board Options Exchange, 531
chooser option, 264, 864
CIR model, 167, 225, 261, 532, 559
CKLS, 558
Clark-Ocone formula, 99, 406
collar option, 9
call spread, 118
costless, 11
put spread, 117

This version: January 15, 2020
https://www.ntu.edu.sg/home/nprivault/index.html
elasticity, 215
enewal processes, 645
entitlement ratio, 8, 208, 212, 315, 316
equivalent probability measure, 27, 34, 67, 179, 245
Esscher transform, 698
ETF, 268
Euclidean path integral, 556
Euler discretization, 708
EURIBOR, 576
European option
 knock-in, 386
 knock-out, 386
event, 713
ex-dividend, 226, 442
exchange option, 488, 515
exchange-traded fund, 268
exercise price, 6
exotic option, 58, 83, 253, 355
 Asian, 413
 continuous time, 355, 387, 413
 discrete time, 97
 lookback option, 387
expectation, 728
 conditional, 731, 738
exponential
 model, 689
 distribution, 643, 722
 Vasicek model, 166, 534, 800
 extrinsic value, 85, 214
face value, 540, 564
Fano factor, 555
Fatou’s lemma, 237, 454, 716
Feller condition, 532
filtration, 61, 131, 445
finite differences
 explicit scheme, 702, 705
 implicit scheme, 703, 706
first theorem of asset pricing, 27, 67, 179, 583
fixed
 income, 529
 derivatives, 603
 leg, 578
 rate, 609
floating
 leg, 578
 rate, 609
 strike, 59
floorlet, 612, 623
fOptions (R package), 895
foreign exchange, 508
 option, 511
foreign exchange option, 195
formula
 Lévy-Khintchine, 650
 smoothing, 650
 Tanaka, 167, 808
 Taylor, 842
forward
 contract, 118, 201, 228, 249, 523, 567, 837, 963
 American, 492, 955
 non-deliverable, 202
 measure, 561, 604
 price, 498
 rate, 567
 agreement, 567
 spot, 567–569, 609
 swap, 577
 start option, 260
 swap rate, 577
four-way zero-collor option, 9
Fourier synthesis, 136
Fourier transform, 294
 inversion, 294
FRA, 567
Fubini theorem, 653
fugazi (the), 308
future contract, 202, 776
FX option, 195
gains process, 82
Galton board, 106
Gamma, 213
gamma
 approximation, 555
 Greek, 207
 process, 658
gamma distribution, 723
gamma function, 723
gap, 679
Garman-Kohlagen formula, 511
Gaussian
 cumulative distribution function, 110, 608
 distribution, 203, 722
 random variable, 743
gearing, 85, 214
effective, 92, 214
Geman-Yor method, 422
generating function, 167, 743
geometric
 average, 416, 440
 Brownian motion, 188, 238
distribution, 726
Girsanov Theorem, 243, 244, 267, 504

This version: January 15, 2020
https://www.ntu.edu.sg/home/nprivault/index.html
jump processes, 666, 684
Greeks, 213
Delta, 200, 205–207, 213, 227, 231, 256
Gamma, 207, 213
Rho, 213
Theta, 213, 231, 264, 863
Vega, 213, 231, 385, 905
gross world product, 5, 16
guarantee
buy back, 7
price lock, 8
GWP, 5

Hartman-Watson distribution, 421
Hawaiian option, 415
heat
equation, 216, 701
map, 340
hedge and forget, 201, 775, 964, 1028
hedge ratio, 92, 215
hedging, 32, 87, 89, 97, 252
change of numéraire, 517
static, 201, 775, 964, 1028
strategy, 253
with jumps, 693
Heston model, 280, 303
Hexanomial model, 792
HIBOR, 576
historical
probability measure, 241
volatility, 281, 305
hitting
probability, 455
time, 449
HJM
condition, 583
model, 581
Ho-Lee model, 535
Hull-White model, 535, 582
immunization, 980
implied
probability, 15
volatility, 308
in the money, 57, 315, 765
in-out parity, 360, 908
independence, 717, 718, 721, 725, 727, 732, 741, 743, 744
independent increments, 236, 668
indicator function, 719
infinum, 727
infinitesimal, 153
information flow, 62
instantaneous forward rate, 570

interest rate
differential, 267
model
affine, 534
Constant Elasticity of Variance, 534
Courtadon, 533
Cox-Ingersoll-Ross, 261, 532
Dothan, 534, 552
exponential Vasicek, 166, 534, 800
Ho-Lee, 535
Hull-White, 535
Marsh-Rosenfeld, 534, 559
Vasicek, 529, 535

interest rate model
Courtadon, 559
Cox-Ingersoll-Ross, 225
intrinsic value, 40, 85, 214
invariant distribution, 292, 300, 531, 533
inverse Gaussian process, 659
IPython notebook, 13, 69, 83, 87, 89, 96, 126, 136, 137, 204, 228, 309, 484, 588, 790
Itô
formula, 155, 262
pathwise, 655
with jumps, 656
isometry, 139, 143, 148, 652
process, 155, 157, 199, 839
stochastic integral, 139, 147, 148, 235
table, 158
with jumps, 661

Jamshidian’s trick, 623
Jensen’s inequality, 118, 237, 418, 448, 775, 848, 926
joint
cumulative distribution function, 357, 724
probability density function, 724
jump-diffusion process, 679
knock-in option, 386
knock-out option, 58, 360, 386
Kullback-Leibler entropy, 686

Lévy
construction of Brownian motion, 136, 168, 826
process, 657
Lévy-Khintchine formula, 650
Lagrangian, 556
Laplace transform, 422, 482

law
of total expectation, 734
numéraire invariance, 518

OLS, 535
opening jump, 679
optimal stopping, 474

option
Asian, 413
basket, 429
call, 413
at the money, 260
barrier, 58, 355
basket, 428
bear spread, 259, 849
binary, 57, 116, 525, 771
bull spread, 259, 849
cash-or-nothing, 57, 525
chooser, 264, 864
digital, 57, 116, 525, 771
drawdown, 410
effective gearing, 92, 214
exotic, 58, 83, 97, 253, 355, 387, 413
extrinsic value, 85, 214
foreign exchange, 195
forward start, 260
gearing, 85, 214
Hawaiian, 415
intrinsic value, 85, 214
issuer, 13, 32
knock-out, 58, 360
lookback, 387
on average, 57, 258, 413, 441
on extrema, 356
out of the money, 263
path-dependent, 97, 253
power, 119, 188, 227, 260, 261, 776
premium, 32, 86, 215
straddle, 867
tunnel, 111, 113
vanilla, 200
variance call, 284
variance swap, 282
volatility swap, 291
writer, 13, 32
zero-collars, 9

optional
sampling, 451
stopping, 451
order book, 829

Ornstein-Uhlenbeck process, 529
out of the money, 57, 263

Paley-Wiener series, 136
par value, 540, 564
parity

call-put, 211, 251, 265, 322, 512, 908
in-out, 360, 908
Partial integro-differential equation, 689
partition, 718, 738
Pascal distribution, 727
path freezing, 623
path integral, 85, 331, 355, 500, 555
Euclidean, 556
path-dependent option, 97, 253
pathwise Itô formula, 655
payable date, 226
payer swap, 578
payoff function, 7, 8, 355
PDE
affine, 294, 535, 977
Black-Scholes, 200, 222
Heston, 292
integro-differential, 689
variational, 476
pentanomial model, 792
perfect
correlation, 592
physical delivery, 13, 56, 209
PIDE, 687, 689
Planck constant, 556
Poisson
compound martingale, 645, 684
distribution, 727
process, 637
compound, 674
portfolio, 20
process, 82
replicating, 89, 94
strategy, 31, 50, 77, 180, 183
admissible, 177, 182
update, 180, 183
value, 54, 78
power option, 119, 188, 227, 260, 261, 776
predictable process, 64, 81, 651
premium
early exercise, 466
negative, 27
option, 86, 215
risk, 27, 178, 239
price
critical, 484
graph, 6, 8, 9, 117, 772, 773
price lock guarantee, 8
pricing, 77, 82
with jumps, 685
principal amount, 621
probability
conditional, 717
density function, 721

This version: January 15, 2020
https://www.ntu.edu.sg/home/nprivault/index.html
integral decomposition, 99, 164, 252, 255
process, 50
stop-loss start-gain strategy, 195
stopped process, 450
stopping time, 448
theorem, 451
straddle option, 867
Stratonovich integral, 816
strike price, 6, 31
floating, 59
string model, 600
strong Markov property, 643
submartingale, 446
super-hedging, 32, 68
supermartingale, 446
Svensson parametrization, 587
swap, 577
amortizing, 579
measure, 498, 613, 630, 632
payer, 578
seller, 578
variance, 282
swaption, 615
Bermudan, 620
Tanaka formula, 167, 808
Taylor’s formula, 153, 842
telescoping sum, 580
tenor structure, 497, 577, 603
terms and data, 85, 213
ternary tree, 73, 111, 124
theorem
asset pricing, 27, 32, 67, 68, 179, 182, 583
dominated convergence, 462, 471
Fubini, 653
Girsanov, 243, 244, 267, 504, 666, 684
stopping time, 451
Theta, 213, 231, 264, 863
TIBOR, 576
time
business, 216
time splitting, 194, 262, 825
tower property, 63, 65, 81, 82, 86, 149, 235, 237, 255, 257, 499, 543, 733, 737, 741, 757, 790
transform
Esscher, 698
Fourier, 294
Laplace, 422, 482
martingale, 64, 82, 451
treasury note, 531

Notes on Stochastic Finance

This version: January 15, 2020
https://www.ntu.edu.sg/home/nprivault/indext.html
Notes on Stochastic Finance

Author index

Achdou, Y. 321
Albanese, C. 532
Albrecher, H. 294
Applebaum, D. 657
Aristotle 5
Attari, M. 294
Bachelier, L. 2, 137
Barone-Adesi, G. 484
Barrieu, P. 421
Benth, F.E. 429
Bermin, H. 406
Björk, T. 41, 589
Black, F. 3, 182, 197, 564, 610, 611
Bosq, D. 639
Boulding, K.E. 183, 496
Brace, A. 4, 595
Breeden, D.T. 318
Brémaud, P. 650
Brigo, D. 546, 594, 977
Brown, R. 1
Burdzy, K. 332
Carr, P. 287, 303, 422
Chan, C.M. 59, 360
Chan, K.C. 558
Charpentier, A. 574
Çinlar, E. 721
Cont, R. 650, 657, 665, 671, 679
Courtadon, G. 533, 559
Cox, J.C. 68, 225, 261, 532
Crépey, S. 415
Curran, M. 427
Da Fonseca, J. 302
Dahl, L. O. 429
Dana, R.A. 398
Dash, J. 500
Dassios, A. 410
Deelstra, G. 429
Demeterfi, K. 304
Denson, N. 523
Derman, E. 304, 319, 564
Devore, J.L. 711
Di Nunno, G. 97, 252
Diallo, I. 429
Doob, J.L. 446, 451, 483
Dothan, L.U. 534, 552
Downes, A. 523
Dudley, R.M. 143
Dufresne, D. 422
Dupire, B. 319
Dvoretzky, A. 332
Einstein, A. 2
El Karoui, N. 498, 518
El Khatib, Y. 406, 408
Elliott, R.J. 466
Erdos, P. 332
Eriksson, J. 59, 360, 380
Ewald, C.-O. 442
Faff, R. 973
Feller, W. 532, 858
Folland, G.B. 133
Föllmer, H 28, 32, 67, 68, 109
Fouque, J.-P. 280, 298
Friz, P. 287, 323
Galton, F. 106
Gao, M. 302
Garman, M.B. 511
Gatarek, D. 4, 595
Gatheral, J. 287, 298, 303, 323
Geman, H. 420, 422, 498, 518, 923
Gerber, H.U. 488, 698
Glasserman, P. 708
Gray, P. 973
Guirreri, S. 574

This version: January 15, 2020
https://www.ntu.edu.sg/home/nprivault/index.html
Notes on Stochastic Finance

Pliska, S.R. 179, 182
Poisson, S.D. 637
Prayoga, A. 290, 555
Profeta, C. 344
Proske, F. 97, 252
Protter, P. 155, 160, 243, 254, 255, 504, 515, 518, 543, 545, 711

Radon, J. 243
Rebonato, R. 281
Revuz, D. 133
Rochet, J.-C. 498, 518
Rogers, C. 434
Rosenfeld, E.R. 534, 559
Ross, S.A. 68, 225, 261, 532
Rouah, F.D. 294
Rouault, A. 421
Royerette, B. 344
Rubinstein, M. 68
Rudin, W. 141, 142
Ruiz de Chávez, J. 97

Samuelson, P.A. 3
Sanders, A.B. 558
Santa-Clara, P. 600
Sato, K. 672
Schied, A. 28, 32, 67, 68, 97, 109
Schoenmakers, J. 620
Scholes, M. 3, 4, 182, 197
Schoutens, W. 294
Schröder, M. 422
Schwartz, E.S. 478, 481
Scorsese, M. 308
She, Q.H. 302
Shi, Z. 434
Shiryaeve, A.N. 179, 182
Shiu, E.S.W. 488, 698
Shreve, S. 343, 351, 366, 438, 464, 485, 526, 896

Sircar, K.R. 280, 298, 323
Sircar, R. 232, 298
Solna, K. 280, 298
Sornette, D. 600
Steele, J.M. 475
Stroock, D.W. 740

Tankov, P. 650, 657, 665, 671, 679
Teng, T.-R. 517, 611, 620
Thales 5
Tistaert, J. 294
Toy, B. 564
Turnbull, S.M. 423

Uy, W.I. 554

Vanmaele, M. 429
Vašiček, O. 529, 535, 546
Vorst, A.C.F. 418

Wakeman, L. 423
Watanabe, S. 147, 237
Wei, X. 620
Whaley, R.E. 484
White, A. 535
Widder, D.V. 218
Wiener, N. 2, 136
Williams, D. 97
Wilmott, P. 488
Wong, H.Y. 59, 360
Woodward, D.E. 281, 328, 884
Wu, X. 565

Yang, Z. 442
Yor, M. 133, 280, 344, 416, 420–422, 553, 923
Yu, J.D. 426, 555

Zhang, Q. 302
Zou, J. 304

This version: January 15, 2020
https://www.ntu.edu.sg/home/nprivault/index.html
References

Notes on Stochastic Finance

(Cited on pages 4 and 583).

volatility with applications to bond and currency options. *The Review of

analysis*. Grundlehren Text Editions. Springer-Verlag, Berlin. (Cited on
page 30).

volume 192 of *Graduate Texts in Mathematics*. Springer-Verlag, New York.
(Cited on page 142).

[82] Ho, S. and Lee, S. (1986). Term structure movements and pricing inter-
est rate contingent claims. *Journal of Finance*, 41:1011–1029. (Cited on
page 535).

(Cited on page 2).

Soc.*, No. 4:51. (Cited on page 2).

Berlin. (Cited on page 711).

(Cited on pages 517 and 518).

Poisson and Brownian components. In Dalang, R., Dozzi, M., and Russo,
F., editors, *Seminar on Stochastic Analysis, Random Fields and Applica-

and its Applications. Springer-Verlag, New York, second edition. (Cited
on page 742).

Notes on Stochastic Finance

This book is an introduction to the pricing and hedging of financial derivatives, including vanilla and exotic options, by stochastic calculus and partial differential equation methods. The presentation is done both in discrete and continuous-time financial models, with an emphasis on the complementarity between algebraic and probabilistic methods. In particular it covers the pricing of some interest rate derivatives, of American options, of exotic options such as barrier, lookback and Asian options, and stochastic models with compound Poisson jumps. The text is accompanied with a number of figures and simulations, and includes numerous examples based on actual market data. The concepts presented are also illustrated by 209 exercises and 12 problems with complete solutions.