Chapter 19
Pricing of Interest Rate Derivatives

Fixed-income derivatives are option contracts whose payoff is based on a fixed-income security such as a bond price, or a cash flow exchanged in an interest rate swap. In this chapter we consider the pricing and hedging of financial derivatives such as bond options, caplets, caps, and swaptions using the change of numéraire technique and forward measures.

19.1 Forward Measures and Tenor Structure

The maturity dates are arranged according to a discrete tenor structure

\[\{0 = T_0 < T_1 < T_2 < \cdots < T_n\} \]

A sample of forward interest rate curve data is given in Table 19.1, which contains the values of \((T_1, T_2, \ldots, T_{23})\) and of \(\{f(t, t + T_i, t + T_i + \delta)\}_{i=1,2,\ldots,23}\), with \(t = 07/05/2003\) and \(\delta = \) six months.

<table>
<thead>
<tr>
<th>Maturity</th>
<th>2D</th>
<th>1W</th>
<th>1M</th>
<th>2M</th>
<th>3M</th>
<th>1Y</th>
<th>2Y</th>
<th>3Y</th>
<th>4Y</th>
<th>5Y</th>
<th>6Y</th>
<th>7Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate (%)</td>
<td>2.55</td>
<td>2.53</td>
<td>2.56</td>
<td>2.52</td>
<td>2.48</td>
<td>2.49</td>
<td>2.79</td>
<td>3.07</td>
<td>3.31</td>
<td>3.52</td>
<td>3.71</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maturity</th>
<th>8Y</th>
<th>9Y</th>
<th>10Y</th>
<th>11Y</th>
<th>12Y</th>
<th>13Y</th>
<th>14Y</th>
<th>15Y</th>
<th>20Y</th>
<th>25Y</th>
<th>30Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate (%)</td>
<td>3.88</td>
<td>4.02</td>
<td>4.14</td>
<td>4.23</td>
<td>4.33</td>
<td>4.40</td>
<td>4.47</td>
<td>4.54</td>
<td>4.74</td>
<td>4.83</td>
<td>4.86</td>
</tr>
</tbody>
</table>

Table 19.1: Forward rates arranged according to a tenor structure.
Recall that by definition of $P(t, T_i)$ and absence of arbitrage the discounted bond price process

$$t \mapsto e^{-\int_0^t r_s ds} P(t, T_i), \quad 0 \leq t \leq T_i, \quad i = 1, 2, \ldots, n,$$

is an \mathcal{F}_t-martingale under the probability measure $\mathbb{P}^* = \mathbb{P}$, hence it satisfies the Assumption (A) page 516. As a consequence the bond price process can be taken as a numéraire

$$N^{(i)}_t := P(t, T_i), \quad 0 \leq t \leq T_i,$$

in the definition of the forward measure \mathbb{P}_t. The following proposition will allow us to price contingent claims using the forward measure \mathbb{P}_t, it is a direct consequence of Proposition 16.5, noting that here we have $P(T_i, T_i) = 1$.

Proposition 19.1. For all sufficiently integrable random variables F we have

$$\mathbb{E}^* \left[F e^{-\int_t^{T_i} r_s ds} \bigg| \mathcal{F}_t \right] = P(t, T_i) \mathbb{E}_t[F | \mathcal{F}_t], \quad 0 \leq t \leq T_i, \quad i = 1, 2, \ldots, n.$$ \hfill (19.2)

Recall that by Proposition 16.4, the deflated process

$$t \mapsto \frac{P(t, T_i)}{P(t, T_i)}, \quad 0 \leq t \leq \min(T_i, T_j),$$

is an \mathcal{F}_t-martingale under \mathbb{P}_t for all $T_i, T_j \geq 0$.

In the sequel we assume as in (17.23) that the dynamics of the bond price $P(t, T_i)$ is given by

$$\frac{dP(t, T_i)}{P(t, T_i)} = r_t dt + \zeta_i(t) dW_t,$$ \hfill (19.3)

for $i = 1, 2, \ldots, n$, where $(W_t)_{t \in \mathbb{R}^+}$ is a standard Brownian motion under \mathbb{P}^* and $(r_t)_{t \in \mathbb{R}^+}$ and $(\zeta_i(t))_{t \in \mathbb{R}^+}$ are adapted processes with respect to the filtration $(\mathcal{F}_t)_{t \in \mathbb{R}^+}$ generated by $(W_t)_{t \in \mathbb{R}^+}$, i.e.

$$P(t, T_i) = P(0, T_i) \exp \left(\int_0^t r_s ds + \int_0^t \zeta_i(s) dW_s - \frac{1}{2} \int_0^t |\zeta_i(s)|^2 ds \right),$$

$0 \leq t \leq T_i, \quad i = 1, 2, \ldots, n.$
Forward Brownian motions

Proposition 19.2. For all \(i = 1, 2, \ldots, n \), the process

\[
\tilde{W}_t^i := W_t - \int_0^t \zeta_i(s)ds, \quad 0 \leq t \leq T_i, \quad (19.4)
\]

is a standard Brownian motion under the forward measure \(\tilde{P}_i \).

Proof. The Girsanov Proposition 16.6 applied to the numéraire

\[
N_t^{(i)} := P(t, T_i), \quad 0 \leq t \leq T_i,
\]

as in (16.11), shows that

\[
d\tilde{W}_t^i := dW_t - \frac{1}{N_t^{(i)}} dN_t^{(i)} \cdot dW_t
\]

\[
= dW_t - \frac{1}{P(t, T_i)} dP(t, T_i) \cdot dW_t
\]

\[
= dW_t - \frac{1}{P(t, T_i)} (P(t, T_i) r_t dt + \zeta_i(t) P(t, T_i) dW_t) \cdot dW_t
\]

\[
= dW_t - \zeta_i(t) dt,
\]

is a standard Brownian motion under the forward measure \(\tilde{P}_i \) for all \(i = 1, 2, \ldots, n \). \qed

We have

\[
d\tilde{W}_t^i = dW_t - \zeta_i(t) dt, \quad i = 1, 2, \ldots, n, \quad (19.5)
\]

and

\[
d\tilde{W}_t^j = dW_t - \zeta_j(t) dt = d\tilde{W}_t^i + (\zeta_i(t) - \zeta_j(t)) dt, \quad i, j = 1, 2, \ldots, n,
\]

which shows that \((\tilde{W}_t^j)_{t \in \mathbb{R}^+}\) has drift \((\zeta_i(t) - \zeta_j(t))_{t \in \mathbb{R}^+}\) under \(\tilde{P}_i\).

Bond price dynamics under the forward measure

In order to apply Proposition 19.1 and to compute the price

\[
\mathbb{E}^* \left[e^{-\int_{T_i}^T r_s ds} C \mid \mathcal{F}_t \right] = P(t, T_i) \tilde{E}_i[C \mid \mathcal{F}_t],
\]

of a random claim payoff \(C \), it can be useful to determine the dynamics of the underlying variables \(r_t, f(t, T, S) \), and \(P(t, T) \) via their stochastic differential equations written under the forward measure \(\tilde{P}_i \).
As a consequence of Proposition 19.2 and (19.3), the dynamics of \(P(t, T_j) \) under \(\tilde{P}_i \) is given by

\[
dP(t, T_j) = r_t dt + \zeta_i(t) \zeta_j(t) dt + \zeta_j(t) d\tilde{W}_t^i, \quad i, j = 1, 2, \ldots, n, \quad (19.6)
\]

where \((\tilde{W}_t^i)_{t \in \mathbb{R}_+}\) is a standard Brownian motion under \(\tilde{P}_i \), and we have

\[
P(t, T_j)
= P(0, T_j) \exp \left(\int_0^t r_s ds + \int_0^t \zeta_j(s) dW_s - \frac{1}{2} \int_0^t |\zeta_j(s)|^2 ds \right) \quad \text{[under } \mathbb{P}^*] \]
\[
= P(0, T_j) \exp \left(\int_0^t r_s ds + \int_0^t \zeta_j(s) d\tilde{W}_s^j + \frac{1}{2} \int_0^t |\zeta_j(s)|^2 ds \right) \]
\[
= P(0, T_j) \exp \left(\int_0^t r_s ds + \int_0^t \zeta_j(s) d\tilde{W}_s^i + \int_0^t \zeta_j(s) \zeta_i(s) ds - \frac{1}{2} \int_0^t |\zeta_j(s)|^2 ds \right) \]
\[
= P(0, T_j) \exp \left(\int_0^t r_s ds + \int_0^t \zeta_j(s) d\tilde{W}_s^i - \frac{1}{2} \int_0^t |\zeta_j(s) - \zeta_i(s)|^2 ds + \frac{1}{2} \int_0^t |\zeta_i(s)|^2 ds \right),
\]

\(t \in [0, T_j], i, j = 1, 2, \ldots, n \). Consequently, the forward price \(P(t, T_j) / P(t, T_i) \) can be written as

\[
P(t, T_j)
= P(0, T_j) \exp \left(\int_0^t (\zeta_j(s) - \zeta_i(s)) d\tilde{W}_s^j + \frac{1}{2} \int_0^t |\zeta_j(s) - \zeta_i(s)|^2 ds \right) \quad \text{[under } \mathbb{P}_j] \]
\[
= P(0, T_j) \exp \left(\int_0^t (\zeta_j(s) - \zeta_i(s)) d\tilde{W}_s^i - \frac{1}{2} \int_0^t |\zeta_i(s) - \zeta_j(s)|^2 ds \right), \quad \text{[under } \mathbb{P}_i] \quad (19.7)
\]

\(t \in [0, \min(T_i, T_j)], i, j = 1, 2, \ldots, n \), which also follows from Proposition 16.7.

Short rate dynamics under the forward measure

In case the short rate process \((r_t)_{t \in \mathbb{R}_+}\) is given as the (Markovian) solution to the stochastic differential equation

\[
dr_t = \mu(t, r_t) dt + \sigma(t, r_t) dW_t,
\]

by (19.5) its dynamics will be given under \(\mathbb{P}_i \) by

\[
dr_t = \mu(t, r_t) dt + \sigma(t, r_t) (\zeta_i(t) dt + d\tilde{W}_t^i) \\
= \mu(t, r_t) dt + \sigma(t, r_t) \zeta_i(t) dt + \sigma(t, r_t) d\tilde{W}_t^i. \quad (19.8)
\]
In the case of the Vašíček (1977) model, by (17.24) we have

\[dr_t = (a - br_t)dt + \sigma dW_t, \]

and

\[\zeta_i(t) = -\frac{\sigma}{b} (1 - e^{-b(T_i - t)}), \quad 0 \leq t \leq T_i, \]

hence from (19.8) we have

\[d\hat{W}_i^t = dW_t - \zeta_i(t)dt = dW_t + \frac{\sigma}{b} (1 - e^{-b(T_i - t)})dt, \]

and

\[dr_t = (a - br_t)dt - \frac{\sigma^2}{b} (1 - e^{-b(T_i - t)})dt + \sigma d\hat{W}_i^t \quad (19.9) \]

and we obtain

\[\frac{dP(t, T_i)}{P(t, T_i)} = r_t dt + \frac{\sigma^2}{b^2} (1 - e^{-b(T_i - t)})^2 dt - \frac{\sigma}{b} (1 - e^{-b(T_i - t)}) d\hat{W}_i^t, \]

from (17.24).

19.2 Bond Options

The next proposition can be obtained as an application of the Margrabe formula (16.28) of Proposition 16.14 by taking \(X_t = P(t, T_j) \), \(N_t^{(i)} = P(t, T_i) \), and \(\hat{X}_t = X_t / N_t^{(i)} = P(t, T_j) / P(t, T_i) \). In the Vasicek model, this formula has been first obtained in Jamshidian (1989).

We work with a standard Brownian motion \((W_t)_{t \in \mathbb{R}_+}\) under \(\mathbb{P}^* \), generating the filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\), and an \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\)-adapted short rate process \((r_t)_{t \in \mathbb{R}_+}\).

Proposition 19.3. Let \(0 \leq T_i \leq T_j \) and assume as in (17.23) that the dynamics of the bond prices \(P(t, T_i) \), \(P(t, T_j) \) under \(\mathbb{P}^* \) are given by

\[\frac{dP(t, T_i)}{P(t, T_i)} = r_t dt + \zeta_i(t) dW_t, \quad \frac{dP(t, T_j)}{P(t, T_j)} = r_t dt + \zeta_j(t) dW_t, \]

where \((\zeta_i(t))_{t \in \mathbb{R}_+}\) and \((\zeta_j(t))_{t \in \mathbb{R}_+}\) are deterministic volatility functions. Then the price of a bond call option on \(P(T_i, T_j) \) with payoff

\[C := (P(T_i, T_j) - \kappa)^+ \]

can be written as
where \(v^2(t, T_i) := \int_t^{T_i} |\zeta_i(s) - \zeta_j(s)|^2 ds \) and
\[
\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy, \quad x \in \mathbb{R},
\]
is the Gaussian cumulative distribution function.

Proof. First, we note that using \(N^{(i)}_t := P(t, T_i) \) as a numéraire the price of a bond call option on \(P(T_i, T_j) \) with payoff \(F = (P(T_i, T_j) - \kappa)^+ \) can be written from Proposition 16.5 using the forward measure \(\hat{P}_i \), or directly by (16.7), as
\[
\mathbb{E}^* \left[e^{-\int_t^{T_i} r_s ds} (P(T_i, T_j) - \kappa)^+ \left| \mathcal{F}_t \right. \right] = P(t, T_i) \hat{\mathbb{E}}_i [(P(T_i, T_j) - \kappa)^+ \left| \mathcal{F}_t \right.].
\]

Next, by (19.7) or by solving (16.13) in Proposition 16.7 we can write \(P(T_i, T_j) \) as the geometric Brownian motion
\[
P(T_i, T_j) = \frac{P(T_i, T_j)}{P(t, T_i)} = \frac{P(t, T_j)}{P(t, T_i)} \exp \left(\int_t^{T_i} (\zeta_j(s) - \zeta_i(s)) d\hat{W}_s^i - \frac{1}{2} \int_t^{T_i} |\zeta_i(s) - \zeta_j(s)|^2 ds \right),
\]
under the forward measure \(\hat{P}_i \), and rewrite (19.11) as
\[
\mathbb{E}^* \left[e^{-\int_t^{T_i} r_s ds} (P(T_i, T_j) - \kappa)^+ \left| \mathcal{F}_t \right. \right] = P(t, T_i) \hat{\mathbb{E}}_i \left[\left(\frac{P(T_i, T_j)}{P(t, T_i)} e^{\int_t^{T_i} (\zeta_j(s) - \zeta_i(s)) d\hat{W}_s^i - \frac{1}{2} \int_t^{T_i} |\zeta_i(s) - \zeta_j(s)|^2 ds - \kappa} \right)^+ \left| \mathcal{F}_t \right. \right].
\]
Pricing of Interest Rate Derivatives

Since $(\zeta_i(s))_{s \in [0,T_i]}$ and $(\zeta_j(s))_{s \in [0,T_j]}$ in (19.3) are deterministic volatility functions, $P(T_i, T_j)$ is a lognormal random variable given \mathcal{F}_t under $\hat{\mathbb{P}}_i$ and we can use Lemma 7.8 to price the bond option by the zero-rate Black-Scholes formula

$$
\text{Bl}(P(t, T_j), \kappa P(t, T_i), v(t, T_i) / \sqrt{T_i - t}, 0, T_i - t)
$$

with underlying asset price $P(t, T_j)$, strike level $\kappa P(t, T_i)$, volatility parameter

$$
v(t, T_i) / \sqrt{T_i - t} = \sqrt{\int_t^{T_i} |\zeta_i(s) - \zeta_j(s)|^2 ds / T_i - t},
$$
time to maturity $T_i - t$, and zero interest rate, which yields (19.10).

Note that from Corollary 16.16 the decomposition (19.10) gives the self-financing portfolio in the assets $P(t, T_i)$ and $P(t, T_j)$ for the claim with payoff $(P(T_i, T_j) - \kappa)^+$.

In the Vasicek case the above bond option price could also be computed from the joint distribution of $(r_T, \int_t^T r_s ds)$, which is Gaussian, or from the dynamics (19.6)-(19.9) of $P(t, T)$ and r_t under $\hat{\mathbb{P}}_i$, cf. § 7.3 of Privault (2012), and Kim (2002) for the CIR and other short rate models with correlated Brownian motions.

19.3 Caplet Pricing

A caplet is an option contract that offers protection against the fluctuations of a variable (or floating) rate with respect to a fixed rate κ. The payoff of a caplet on the yield (or spot forward rate) $L(T_i, T_i, T_{i+1})$ with strike level κ can be written as

$$(L(T_i, T_i, T_{i+1}) - \kappa)^+,$$

and priced at time $t \in [0, T_i]$ from Proposition 16.5 using the forward measure $\hat{\mathbb{P}}_i$ as

$$
\mathbb{E}^* \left[e^{-\int_t^{T_{i+1}} r_s ds} (L(T_i, T_i, T_{i+1}) - \kappa)^+ \right| \mathcal{F}_t] = P(t, T_{i+1}) \mathbb{E}_{i+1}^* [(L(T_i, T_i, T_{i+1}) - \kappa)^+ | \mathcal{F}_t],
$$

by taking $N^{(i+1)}_t = P(t, T_{i+1})$ as a numéraire.

Proposition 19.4. The LIBOR rate

$$
L(t, T_i, T_{i+1}) := \frac{1}{T_{i+1} - T_i} \left(\frac{P(t, T_i)}{P(t, T_{i+1})} - 1 \right), \quad 0 \leq t \leq T_i < T_{i+1},
$$

is a martingale under the forward measure $\hat{\mathbb{P}}_{i+1}$ defined in (19.1).
Proof. The LIBOR rate $L(t, T_i, T_{i+1})$ is a deflated process according to the forward numéraire process $(P(t, T_{i+1}))_{t \in [0, T_{i+1}]}$. Therefore, by Proposition 16.4 it is a martingale under $\tilde{\mathbb{P}}_{i+1}$.

The caplet on $L(T_i, T_i, T_{i+1})$ can be priced at time $t \in [0, T_i]$ as

$$
\mathbb{E}^* \left[e^{-\int_t^{T_i+1} r_s ds} (L(T_i, T_i, T_{i+1}) - \kappa)^+ \bigg| \mathcal{F}_t \right] = \mathbb{E}^* \left[e^{-\int_t^{T_i+1} r_s ds} \left(\frac{1}{T_{i+1} - T_i} \left(\frac{P(t, T_i)}{P(t, T_{i+1})} - 1 \right) \right) + \bigg| \mathcal{F}_t \right],
$$

where the discount factor is counted from the settlement date T_{i+1}. The next pricing formula (19.15) is known as the Black caplet formula. It allows us to price and hedge a caplet using a portfolio based on the bonds $P(t, T_i)$ and $P(t, T_{i+1})$, cf. (19.19) below, when $L(t, T_i, T_{i+1})$ is modeled in the BGM model of Section 18.6.

Proposition 19.5. Assume that $L(t, T_i, T_{i+1})$ is modeled in the BGM model as

$$
dL(t, T_i, T_{i+1}) = \gamma_i(t)d\hat{W}^{\gamma_i+1},
$$

$0 \leq t \leq T_i$, $i = 1, 2, \ldots, n-1$, where $\gamma_i(t)$ is a deterministic volatility function of time $t \in [0, T_i]$, $i = 1, 2, \ldots, n-1$. The caplet on $L(T_i, T_i, T_{i+1})$ with strike level κ is priced at time $t \in [0, T_i]$ as

$$
(T_{i+1} - T_i) \mathbb{E}^* \left[e^{-\int_t^{T_{i+1}} r_s ds} (L(T_i, T_i, T_{i+1}) - \kappa)^+ \bigg| \mathcal{F}_t \right] = \left(P(t, T_i) - P(t, T_{i+1}) \right) \Phi(d_+(t, T_i)) - \kappa(T_{i+1} - T_i) P(t, T_{i+1}) \Phi(d_-(t, T_i)),
$$

$0 \leq t \leq T_i$, where

$$
d_+(t, T_i) = \frac{\log(L(t, T_i, T_{i+1})/\kappa) + (T_i - t)\sigma^2(t, T_i)/2}{\sigma_i(t, T_i)\sqrt{T_i - t}},
$$

and

$$
d_-(t, T_i) = \frac{\log(L(t, T_i, T_{i+1})/\kappa) - (T_i - t)\sigma^2(t, T_i)/2}{\sigma_i(t, T_i)\sqrt{T_i - t}},
$$

and

$$
|\sigma_i(t, T_i)|^2 = \frac{1}{T_i - t} \int_t^{T_i} \gamma_i^2(s) ds.
$$

Proof. Taking $P(t, T_{i+1})$ as a numéraire, the forward price

628

This version: June 7, 2020

https://www.ntu.edu.sg/home/nprivault/index.html
\[\hat{X}_t := \frac{P(t, T_i)}{P(t, T_{i+1})} = 1 + (T_{i+1} - T_i)L(T_i, T_i, T_{i+1}) \]

and the forward LIBOR rate process \((L(t, T_i, T_{i+1}))_{t \in [0, T_i]}\) are martingales under \(\hat{\mathbb{P}}_{i+1}\) by Proposition 19.4, \(i = 1, 2, \ldots, n - 1\). More precisely, by (19.14) we have

\[
L(T_i, T_i, T_{i+1}) = L(t, T_i, T_{i+1}) \exp \left(\int_t^{T_i} \gamma_i(s) d\hat{W}_s^{i+1} - \frac{1}{2} \int_t^{T_i} |\gamma_i(s)|^2 ds \right),
\]

\(0 \leq t \leq T_i\), i.e. \(t \mapsto L(t, T_i, T_{i+1})\) is a geometric Brownian motion with volatility \(\gamma_i(t)\) under \(\hat{\mathbb{P}}_{i+1}\). Hence by (19.12), since \(N_{T_{i+1}}^{(i+1)} = 1\), we have

\[
\mathbb{E}^* \left[e^{-\int_t^{T_{i+1}} r_s ds} (L(T_i, T_i, T_{i+1}) - \kappa)^+ \bigg| \mathcal{F}_t \right] = P(t, T_{i+1}) \hat{\mathbb{E}}_{i+1} \left[(L(T_i, T_i, T_{i+1}) - \kappa)^+ \bigg| \mathcal{F}_t \right] = P(t, T_{i+1}) (L(t, T_i, T_{i+1}) \Phi(d_+(t, T_i)) - \kappa \Phi(d_-(t, T_i)))
\]

\[
= P(t, T_{i+1}) \text{Bl}(L(t, T_i, T_{i+1}), \kappa, \sigma_i(t, T_i), 0, T_i - t),
\]

\(t \in [0, T_i]\), where

\[
\text{Bl}(x, \kappa, \sigma, 0, \tau) = x \Phi(d_+(t, T_i)) - \kappa \Phi(d_-(t, T_i))
\]

is the zero-interest rate Black-Scholes function, with

\[
|\sigma_i(t, T_i)|^2 = \frac{1}{T_i - t} \int_t^{T_i} |\gamma_i|^2(s) ds.
\]

Therefore, we obtain

\[
(T_{i+1} - T_i) \mathbb{E}^* \left[e^{-\int_t^{T_{i+1}} r_s ds} (L(T_i, T_i, T_{i+1}) - \kappa)^+ \bigg| \mathcal{F}_t \right] = P(t, T_{i+1}) L(t, T_i, T_{i+1}) \Phi(d_+(t, T_i)) - \kappa P(t, T_{i+1}) \Phi(d_-(t, T_i))
\]

\[
= P(t, T_{i+1}) \left(\frac{P(t, T_i)}{P(t, T_{i+1})} - 1 \right) \Phi(d_+(t, T_i)) - \kappa (T_{i+1} - T_i) P(t, T_{i+1}) \Phi(d_-(t, T_i)),
\]

which yields (19.15). \(\square\)

In addition, by Corollary 16.16 we obtain the self-financing portfolio strategy

\[
(\Phi(d_+(t, T_i)), -\Phi(d_+(t, T_i)) - \kappa (T_{i+1} - T_i) \Phi(d_-(t, T_i))) \quad (19.19)
\]

in the bonds \((P(t, T_i), P(t, T_{i+1}))\) with maturities \(T_i\) and \(T_{i+1}\), cf. Corollary 16.17 and Privault and Teng (2012).
The formula (19.15) is also known as the Black (1976) formula when applied to options on underlying futures or forward contracts on commodities, which are modeled according to (19.14). In this case, the bond price $P(t, T_{i+1})$ can be simply modeled as $P(t, T_{i+1}) = e^{-(T_{i+1}-t)r}$ and (19.15) becomes

$$e^{-(T_{i+1}-t)r}L(t, T_i, T_{i+1})\Phi(d_+(t, T_i)) - \kappa e^{-(T_{i+1}-t)r}\Phi(d_-(t, T_i)),$$

where $L(t, T_i, T_{i+1})$ is the underlying future price.

Floorlet pricing

The floorlet on $L(T_i, T_i, T_{i+1})$ with strike level κ is a contract with payoff $(\kappa - L(T_i, T_i, T_{i+1}))^+$. Floorlets are analog to put options and can be similarly priced by the call/put parity in the Black-Scholes formula.

Proposition 19.6. Assume that $L(t, T_i, T_{i+1})$ is modeled in the BGM model as in (19.14). The floorlet on $L(T_i, T_i, T_{i+1})$ with strike level κ is priced at time $t \in [0, T_i]$ as

$$
(T_{i+1} - T_i) \mathbb{E}^* \left[e^{-\int_t^{T_{i+1}} r_s ds} (\kappa - L(T_i, T_i, T_{i+1}))^+ \middle| \mathcal{F}_t \right] = \kappa(T_{i+1} - T_i)P(t, T_{i+1})\Phi(-d_-(T_i - t)) - (P(t, T_i) - P(t, T_{i+1}))(\Phi(-d_+(T_i - t)),
$$

for $0 \leq t \leq T_i$, where $d_+(t, T_i), d_-(t, T_i)$ and $|\sigma_i(t, T_i)|^2$ are defined in (19.16)-(19.18).

Proof. We have

$$(T_{i+1} - T_i) \mathbb{E}^* \left[e^{-\int_t^{T_{i+1}} r_s ds} (\kappa - L(T_i, T_i, T_{i+1}))^+ \middle| \mathcal{F}_t \right] = (T_{i+1} - T_i)P(t, T_{i+1})\mathbb{E} \left[(\kappa - L(T_i, T_i, T_{i+1}))^+ \middle| \mathcal{F}_t \right] = (T_{i+1} - T_i)P(t, T_{i+1})\kappa\Phi(-d_-(T_i - t)) - (T_{i+1} - T_i)\Phi(-d_+(T_i - t))).$$

Cap Pricing

More generally, one can consider caps that are relative to a given tenor structure $\{T_1, T_2, \ldots, T_n\}$, with discounted payoff

630

This version: June 7, 2020
https://www.ntu.edu.sg/home/nprivault/index.html
Pricing of Interest Rate Derivatives

\[\sum_{k=1}^{n-1} (T_{k+1} - T_k) e^{-\int_t^{T_{k+1}} r_s ds} (L(T_k, T_k, T_{k+1}) - \kappa)^+. \]

Pricing formulas for caps are easily deduced from analog formulas for caplets, since the payoff of a cap can be decomposed into a sum of caplet payoffs. Thus, the cap price at time \(t \in [0, T_1] \) is given by

\[
\begin{align*}
&\mathbb{E}^* \left[\sum_{k=1}^{n-1} (T_{k+1} - T_k) e^{-\int_t^{T_{k+1}} r_s ds} (L(T_k, T_k, T_{k+1}) - \kappa)^+ \bigg| \mathcal{F}_t \right] \\
&= \sum_{k=1}^{n-1} (T_{k+1} - T_k) \mathbb{E}^* \left[e^{-\int_t^{T_{k+1}} r_s ds} (L(T_k, T_k, T_{k+1}) - \kappa)^+ \bigg| \mathcal{F}_t \right] \\
&= \sum_{k=1}^{n-1} (T_{k+1} - T_k) P(t, T_{k+1}) \hat{\mathbb{E}}_{k+1} [(L(T_k, T_k, T_{k+1}) - \kappa)^+ \big| \mathcal{F}_t].
\end{align*}
\]

(19.21)

In the BGM model (19.14) the cap with payoff

\[\sum_{k=1}^{n-1} (T_{k+1} - T_k)(L(T_k, T_k, T_{k+1}) - \kappa)^+ \]

can be priced at time \(t \in [0, T_1] \) by the Black formula

\[\sum_{k=1}^{n-1} (T_{k+1} - T_k) P(t, T_{k+1}) Bl(L(t, T_k, T_{k+1}), \kappa, \sigma_k(t, T_k), 0, T_k - t), \]

where

\[|\sigma_k(t, T_k)|^2 = \frac{1}{T_k - t} \int_t^{T_k} |\gamma_k|^2(s) ds. \]

19.4 Forward Swap Measures

In this section we introduce the forward swap measures, or annuity measures, to be used for the pricing of swaptions, and we study their properties. We start with the definition of the annuity numéraire

\[N_t^{(i,j)} := P(t, T_i, T_j) = \sum_{k=i}^{j-1} (T_{k+1} - T_k) P(t, T_{k+1}), \quad 0 \leq t \leq T_i, \quad (19.22) \]

with in particular, when \(j = i + 1, \)

\[P(t, T_i, T_{i+1}) = (T_{i+1} - T_i) P(t, T_{i+1}), \quad 0 \leq t \leq T_i. \]
The forward swap measure $\mathbb{P}^{i,j}$ is defined, according to Definition 16.1, by

$$\frac{d\mathbb{P}^{i,j}}{d\mathbb{P}^*} := e^{-\int_0^{t_i} r_s ds} \frac{N^{(i,j)}_t}{N^{(i,j)}_0} = e^{-\int_0^{T_i} r_s ds} \frac{P(T_i, T_i, T_j)}{P(0, T_i, T_j)}, \quad 1 \leq i < j \leq n. \quad (19.23)$$

Remark 19.8. We have

$$\mathbb{E}^* \left[\frac{d\mathbb{P}^{i,j}}{d\mathbb{P}^*} \mid \mathcal{F}_t \right] = \frac{1}{P(0, T_i, T_j)} \mathbb{E}^* \left[e^{-\int_0^{T_i} r_s ds} P(T_i, T_i, T_j) \mid \mathcal{F}_t \right]$$

$$= \frac{1}{P(0, T_i, T_j)} \mathbb{E}^* \left[e^{-\int_0^{T_i} r_s ds} \sum_{k=i}^{j-1} (T_{k+1} - T_k) P(T_i, T_{k+1}) \mid \mathcal{F}_t \right]$$

$$= \frac{1}{P(0, T_i, T_j)} \sum_{k=i}^{j-1} (T_{k+1} - T_k) \mathbb{E}^* \left[e^{-\int_0^{T_i} r_s ds} P(T_i, T_{k+1}) \mid \mathcal{F}_t \right]$$

$$= \frac{1}{P(0, T_i, T_j)} e^{-\int_0^{t_i} r_s ds} \sum_{k=i}^{j-1} (T_{k+1} - T_k) P(t, T_{k+1})$$

$$= e^{-\int_0^{t_i} r_s ds} \frac{P(t, T_i, T_j)}{P(0, T_i, T_j)}, \quad 0 \leq t \leq T_i,$$ by Remark 19.7, and

$$\frac{d\mathbb{P}^{i,j}}{d\mathbb{P}^*} \mid \mathcal{F}_t = e^{-\int_0^{T_i} r_s ds} \frac{P(T_i, T_i, T_j)}{P(t, T_i, T_j)}, \quad 0 \leq t \leq T_{i+1}, \quad (19.24)$$

by Relation (16.3) in Lemma 16.2.

Proposition 19.9. The LIBOR swap rate

$$S(t, T_i, T_j) = \frac{P(t, T_i) - P(t, T_j)}{P(t, T_i, T_j)} = v^{i,j}_i(t) - v^{i,j}_j(t), \quad 0 \leq t \leq T_i,$$
Proof. We use the fact that the deflated process
\[t \mapsto v_{k}^{ij}(t) := \frac{P(t, T_k)}{P(t, T_i, T_j)}, \quad i, j, k = 1, 2, \ldots, n, \]
is an \(\mathcal{F}_t \)-martingale under \(\widehat{P}_{i,j} \) by Proposition 16.4.

The following pricing formula is then stated for a given integrable claim with payoff of the form \(P(T_i, T_i, T_j)F \), using the forward swap measure \(\widehat{P}_{i,j} \):
\[
\mathbb{E}^* \left[e^{-\int_{T_i}^{T_{i+1}} r_s ds} P(T_i, T_i, T_j) F \mid \mathcal{F}_t \right] = P(t, T_i, T_j) \mathbb{E}^* \left[F \frac{d\widehat{P}_{i,j}[F]}{d\mathbb{P}^*[\mathcal{F}_t]} \mid \mathcal{F}_t \right] = P(t, T_i, T_j) \mathbb{E}^* \left[F \mid \mathcal{F}_t \right], \quad (19.25)
\]
after applying (19.23) and (19.24) on the last line, or Proposition 16.5.

19.5 Swaption Pricing

A payer (or call) swaption gives the option, but not the obligation, to enter an interest rate swap as payer of a fixed rate \(\kappa \) and as receiver of a floating LIBOR rate \(L(T_i, T_k, T_{k+1}) \), and has the payoff
\[
\left(\sum_{k=i}^{j-1} (T_{k+1} - T_k) \right) \mathbb{E}^* \left[e^{-\int_{T_i}^{T_{k+1}} r_s ds} \mid \mathcal{F}_{T_i} \right] (L(T_i, T_k, T_{k+1}) - \kappa) \right)^+
= \left(\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(T_i, T_{k+1}) (L(T_i, T_k, T_{k+1}) - \kappa) \right)^+
\]
at time \(T_i \). This swaption can be priced at time \(t \in [0, T_i] \) under the risk-neutral probability measure \(\mathbb{P}^* \) as
\[
\mathbb{E}^* \left[e^{-\int_{T_i}^{T_{i+1}} r_s ds} \left(\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(T_i, T_{k+1}) (L(T_i, T_k, T_{k+1}) - \kappa) \right)^+ \mid \mathcal{F}_t \right], \quad (19.26)
\]
t \in [0, T_i] \). When \(j = i + 1 \), the swaption price (19.26) coincides with the price at time \(t \) of a caplet on \([T_i, T_{i+1}]\) up to a factor \(\delta_i := T_{i+1} - T_i \), since
\[
\mathbb{E}^* \left[e^{-\int_{T_i}^{T_{i+1}} r_s ds} ((T_{i+1} - T_i) P(T_i, T_{i+1}) (L(T_i, T_i, T_{i+1}) - \kappa))^+ \mid \mathcal{F}_t \right]
= (T_{i+1} - T_i) \mathbb{E}^* \left[e^{-\int_{T_i}^{T_{i+1}} r_s ds} P(T_i, T_{i+1}) (L(T_i, T_i, T_{i+1}) - \kappa))^+ \mid \mathcal{F}_t \right]
\]
\(\diamond \)
\[(T_{i+1} - T_i) \mathbb{E}^* \left[e^{- \int_{T_i}^{T_{i+1}} r_s ds} \mathbb{E}^* \left[e^{- \int_{T_i}^{T_{i+1}} r_s ds} \left| \mathcal{F}_{T_i} \right| (L(T_i, T_i, T_{i+1}) - \kappa)^+ \left| \mathcal{F}_t \right) \right] \right] \]
\[= (T_{i+1} - T_i) \mathbb{E}^* \left[\mathbb{E}^* \left[e^{- \int_{T_i}^{T_{i+1}} r_s ds} \left| \mathcal{F}_{T_i} \right| (L(T_i, T_i, T_{i+1}) - \kappa)^+ \left| \mathcal{F}_t \right) \right] \right] \]
\[= (T_{i+1} - T_i) \mathbb{E}^* \left[e^{- \int_{T_i}^{T_{i+1}} r_s ds} (L(T_i, T_i, T_{i+1}) - \kappa)^+ \left| \mathcal{F}_t \right) \right], \quad (19.27) \]

0 \leq t \leq T_i$, which coincides with the caplet price (19.12) up to the factor $T_{i+1} - T_i$. Unlike in the case of caps, the sum in (19.26) can not be taken out of the positive part. Nevertheless, the price of the swaption can be bounded as in the next proposition.

Proposition 19.10. The payer swaption price (19.26) can be upper bounded by the cap price (19.21) as

\[\mathbb{E}^* \left[e^{- \int_{T_i}^{T_{i+1}} r_s ds} \left(\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(T_i, T_{k+1}) (L(T_i, T_k, T_{k+1}) - \kappa) \right)^+ \left| \mathcal{F}_t \right) \right] \]
\[\leq \mathbb{E}^* \left[\sum_{k=i}^{j-1} (T_{k+1} - T_k) e^{- \int_{T_i}^{T_{k+1}} r_s ds} (L(T_i, T_k, T_{k+1}) - \kappa)^+ \left| \mathcal{F}_t \right) \right], \]

0 \leq t \leq T_i.

Proof. Due to the inequality

\[(x_1 + x_2 + \cdots + x_m)^+ \leq x_1^+ + x_2^+ + \cdots + x_m^+, \quad x_1, x_2, \ldots, x_m \in \mathbb{R}, \]

we have

\[\mathbb{E}^* \left[e^{- \int_{T_i}^{T_{i+1}} r_s ds} \left(\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(T_i, T_{k+1}) (L(T_i, T_k, T_{k+1}) - \kappa) \right)^+ \left| \mathcal{F}_t \right) \right] \]
\[\leq \mathbb{E}^* \left[e^{- \int_{T_i}^{T_{i+1}} r_s ds} \sum_{k=i}^{j-1} (T_{k+1} - T_k) P(T_i, T_{k+1}) (L(T_i, T_k, T_{k+1}) - \kappa)^+ \left| \mathcal{F}_t \right) \right] \]
\[= \sum_{k=i}^{j-1} (T_{k+1} - T_k) \mathbb{E}^* \left[e^{- \int_{T_i}^{T_{k+1}} r_s ds} P(T_i, T_{k+1}) (L(T_i, T_k, T_{k+1}) - \kappa)^+ \left| \mathcal{F}_t \right) \right] \]
\[= \sum_{k=i}^{j-1} (T_{k+1} - T_k) \mathbb{E}^* \left[e^{- \int_{T_i}^{T_{k+1}} r_s ds} \mathbb{E}^* \left[e^{- \int_{T_i}^{T_{k+1}} r_s ds} \left| \mathcal{F}_{T_i} \right| (L(T_i, T_k, T_{k+1}) - \kappa)^+ \left| \mathcal{F}_t \right) \right] \right] \]
\[= \sum_{k=i}^{j-1} (T_{k+1} - T_k) \mathbb{E}^* \left[\mathbb{E}^* \left[e^{- \int_{T_i}^{T_{k+1}} r_s ds} (L(T_i, T_k, T_{k+1}) - \kappa)^+ \left| \mathcal{F}_t \right) \right] \right] \]
Lemma 19.11. see Proposition 18.7 and Corollary 18.8. which is a direct consequence of the definition of the swap rate $S(T_i, T_i, T_j)$, see Proposition 18.7 and Corollary 18.8.

The payoff of the payer swaption can be rewritten as in the following lemma which is a direct consequence of the definition of the swap rate $S(T_i, T_i, T_j)$, see Proposition 18.7 and Corollary 18.8.

Lemma 19.11. The payer swaption payoff (19.26) can be rewritten as

\[
\left(\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(T_i, T_{k+1})(L(T_i, T_k, T_{k+1}) - \kappa) \right)^+ \\
= (P(T_i, T_i) - P(T_i, T_j) - \kappa P(T_i, T_j))^+ \quad (19.28) \\
= P(T_i, T_i, T_j) (S(T_i, T_i, T_j) - \kappa)^+. \quad (19.29)
\]

Proof. The relation

\[
\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(t, T_{k+1})(L(t, T_k, T_{k+1}) - S(t, T_i, T_j)) = 0
\]

that defines the forward swap rate $S(t, T_i, T_j)$ shows that

\[
\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(t, T_{k+1})L(t, T_k, T_{k+1}) \\
= S(t, T_i, T_j) \sum_{k=i}^{j-1} (T_{k+1} - T_k) P(t, T_{k+1}) \\
= P(t, T_i, T_j) S(t, T_i, T_j) \\
= P(t, T_i) - P(t, T_j)
\]

as in the proof of Corollary 18.8, hence by the definition (19.22) of $P(t, T_i, T_j)$ we have

\[
\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(t, T_{k+1})(L(t, T_k, T_{k+1}) - \kappa) \\
= P(t, T_i) - P(t, T_j) - \kappa P(t, T_i, T_j) \\
= P(t, T_i, T_j) (S(t, T_i, T_j) - \kappa) ,
\]

and for $t = T_i$ we get

\[
\bigcirc
\]

635

This version: June 7, 2020

https://www.ntu.edu.sg/home/nprivault/index.html
or equivalently (19.29), by modeling the swap rate as a geometric Brownian motion under the forward swap measure \(\mathbb{F}_{i,j} \).

Proposition 19.12. The price (19.26) of the payer swaption with payoff

\[
\left(\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(T_i, T_{k+1}) (L(T_i, T_k, T_{k+1}) - \kappa) \right)^+
= P(t, T_i, T_j) \left[(S(T_i, T_i, T_j) - \kappa)^+ \right]_{\mathcal{F}_t}, \quad 0 \leq t \leq T_i,
\]

on the LIBOR market can be written under the forward swap measure \(\mathbb{P}_{i,j} \)

as the European call price

\[P(t, T_i, T_j) \mathbb{E}_{i,j} \left[(S(T_i, T_i, T_j) - \kappa)^+ \right| \mathcal{F}_t], \quad 0 \leq t \leq T_i, \]

on the swap rate \(S(T_i, T_i, T_j) \).

Proof. As a consequence of (19.25) and Lemma 19.11, we find

\[
\mathbb{E}^* \left[e^{-\int_t^{T_i} r_s ds} \left(\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(T_i, T_{k+1}) (L(T_i, T_k, T_{k+1}) - \kappa) \right)^+ \right| \mathcal{F}_t]
= \mathbb{E}^* \left[e^{-\int_t^{T_i} r_s ds} (P(T_i, T_i) - P(T_i, T_j) - \kappa P(T_i, T_i, T_j)) \right| \mathcal{F}_t]
= \mathbb{E}^* \left[e^{-\int_t^{T_i} r_s ds} P(T_i, T_i, T_j) (S(T_i, T_i, T_j) - \kappa)^+ \right| \mathcal{F}_t]
= \mathbb{E}^* \left[\frac{d\mathbb{P}_{i,j}|_{\mathcal{F}_t}}{d\mathbb{P}^*|_{\mathcal{F}_t}} (S(T_i, T_i, T_j) - \kappa)^+ \right| \mathcal{F}_t]
= P(t, T_i, T_j) \mathbb{E}_{i,j} \left[(S(T_i, T_i, T_j) - \kappa)^+ \right| \mathcal{F}_t].
\]

In the next Proposition 19.13 we price the payer swaption with payoff (19.30) or equivalently (19.29), by modeling the swap rate \(S(t, T_i, T_j) \) using standard Brownian motion \(\tilde{W}_{i,j} \) under the forward measure \(\mathbb{P}_{i,j} \), see Exercise 19 for swaption pricing without the Black-Scholes formula.

Proposition 19.13. Assume that the LIBOR swap rate (18.17) is modeled as a geometric Brownian motion under \(\tilde{P}_{i,j} \), i.e.
Pricing of Interest Rate Derivatives

\[dS(t, T_i, T_j) = S(t, T_i, T_j)\tilde{\sigma}_{i,j}(t)\, d\tilde{W}_t^{i,j}, \]

(19.33)

where \((\tilde{\sigma}_{i,j}(t))_{t \in \mathbb{R}^+}\) is a deterministic volatility function of time. Then the payer swap option with payoff

\[(P(T, T_i) - P(T, T_j) - \kappa P(T_i, T_j))^+ = P(T_i, T_j) (S(T_i, T_j) - \kappa)^+ \]

can be priced using the Black-Scholes call formula as

\[
E^* \left[e^{-\int_t^{T_i} r_s \, ds} P(T_i, T_j) (S(T_i, T_j) - \kappa)^+ \bigg| \mathcal{F}_t \right]
= (P(t, T_i) - P(t, T_j)) \Phi(d_+(T_i - t))
- \kappa \Phi(d-(T_i - t)) \sum_{k=i}^{j-1} (T_{k+1} - T_k) P(t, T_{k+1}),
\]

where

\[
d_+(T_i - t) = \frac{\log(S(t, T_i, T_j)/\kappa) + \sigma_{i,j}^2(t, T_i)/2}{\sigma_{i,j}(t, T_i) \sqrt{T_i - t}}, \quad (19.34)
\]

and

\[
d_-(T_i - t) = \frac{\log(S(t, T_i, T_j)/\kappa) - \sigma_{i,j}^2(t, T_i)/2}{\sigma_{i,j}(t, T_i) \sqrt{T_i - t}}, \quad (19.35)
\]

and

\[
|\sigma_{i,j}(t, T_i)|^2 = \frac{1}{T_i - t} \int_t^{T_i} |\tilde{\sigma}(s)|^2 ds, \quad 0 \leq t \leq T. \quad (19.36)
\]

\textbf{Proof.} Since \(S(t, T_i, T_j)\) is a geometric Brownian motion with volatility function \((\tilde{\sigma}(t))_{t \in \mathbb{R}^+}\) under \(\widehat{\mathbb{P}}_{i,j}\), by (19.28)-(19.29) and (19.31)-(19.32) we have

\[
E^* \left[e^{-\int_t^{T_i} r_s \, ds} P(T_i, T_j) (S(T_i, T_j) - \kappa)^+ \bigg| \mathcal{F}_t \right]
= E^* \left[e^{-\int_t^{T_i} r_s \, ds} (P(T, T_i) - P(T, T_j) - \kappa P(T_i, T_j))^+ \bigg| \mathcal{F}_t \right]
= P(t, T_i, T_j) E_{i,j} \left[(S(T_i, T_j) - \kappa)^+ \bigg| \mathcal{F}_t \right]
= P(t, T_i, T_j) \text{Bl}(S(t, T_i, T_j), \kappa, \sigma_{i,j}(t, T_i), 0, T_i - t)
= P(t, T_i, T_j) (S(t, T_i, T_j) \Phi_+(t, S(t, T_i, T_j)) - \kappa \Phi_-(t, S(t, T_i, T_j)))
= (P(t, T_i) - P(t, T_j)) \Phi_+(t, S(t, T_i, T_j)) - \kappa P(t, T_i, T_j) \Phi_-(t, S(t, T_i, T_j))
= (P(t, T_i) - P(t, T_j)) \Phi_+(t, S(t, T_i, T_j))
- \kappa \Phi_-(t, S(t, T_i, T_j)) \sum_{k=i}^{j-1} (T_{k+1} - T_k) P(t, T_{k+1}).
\]

\[\square \]

In addition, the hedging strategy
\[(\Phi_+(t, S(t, T_i, T_j)), -\kappa \Phi_-(t, S(t, T_i, T_j))(T_{i+1} - T_i), \ldots
\]
\[\ldots, -\kappa \Phi_-(t, S(t, T_i, T_j))(T_{j-1} - T_{j-2}), -\Phi_+(t, S(t, T_i, T_j))) \]

based on the assets \((P(t, T_i), \ldots, P(t, T_j))\) is self-financing by Corollary 16.17, cf. also Privault and Teng (2012). Similarly to the above, a receiver (or put) swaption gives the option, but not the obligation, to enter an interest rate swap as receiver of a fixed rate \(\kappa\) and as payer of a floating LIBOR rate \(L(T_i, T_k, T_{k+1})\), and can be priced as in the next proposition.

Proposition 19.14. Assume that the LIBOR swap rate (18.17) is modeled as the geometric Brownian motion (19.33) under \(\tilde{P}_{i,j}\). Then the receiver swaption with payoff

\[(\kappa P(T_i, T_i, T_j) - (P(T_i) - P(T, T_j)))^+ = P(T_i, T_i, T_j) (\kappa - S(T_i, T_i, T_j))^+ \]

can be priced using the Black-Scholes put formula as

\[
\mathbb{E}^* \left[e^{-\int_t^{T_i} r_s ds} P(T_i, T_i, T_j) (\kappa - S(T_i, T_i, T_j))^+ \mid \mathcal{F}_t \right]
\]

\[= \kappa \Phi(-d_-(T_i - t)) \sum_{k=i}^{j-1} (T_{k+1} - T_k) P(t, T_{k+1})
\]
\[- (P(t, T_i) - P(t, T_j)) \Phi(-d_+(T_i - t)), \]

where \(d_+(T_i - t), \text{ and } d_-(T_i - t) \text{ and } |\sigma_{i,j}(t, T_i)|^2 \text{ are defined in (19.34)-(19.36)}. \]

Swaption prices can also be computed by an approximation formula, from the exact dynamics of the swap rate \(S(t, T_i, T_j)\) under \(\tilde{P}_{i,j}\), based on the bond price dynamics of the form (19.3), cf. Schoenmakers (2005), page 17.

Swaption volatilities can be estimated from swaption prices as implied volatilities from the Black pricing formula:
Implied swaption volatilities can then be used to calibrate the BGM model, cf. Schoenmakers (2005), Privault and Wei (2009), § 11.4 of Privault (2012).

Bermudan swaption pricing in Quantlib

The Bermudan swaption on the tenor structure \(\{ T_i, \ldots, T_j \} \) is priced as the supremum

\[
\sup_{\tau \in \{ T_i, \ldots, T_j \}} E^* \left[e^{-\int_{\tau}^{T} r_s ds} \left(\sum_{k=\tau}^{j-1} (T_{k+1} - T_k) P(\tau, T_{k+1}) (L(\tau, T_k, T_{k+1}) - \kappa) \right)^+ \bigg| F_t \right]
\]

\[
= \sup_{\tau \in \{ T_i, \ldots, T_j \}} E^* \left[e^{-\int_{\tau}^{T} r_s ds} (P(\tau, \tau) - P(\tau, T_j) - \kappa P(\tau, \tau, T_j))^+ \bigg| F_t \right]
\]

\[
= \sup_{\tau \in \{ T_i, \ldots, T_j \}} E^* \left[e^{-\int_{\tau}^{T} r_s ds} P(\tau, \tau, T_j) (S(\tau, \tau, T_j) - \kappa)^+ \bigg| F_t \right],
\]

where the supremum is over all stopping times \(\tau \) taking values in \(\{ T_i, \ldots, T_j \} \).

Bermudan swaptions can be priced using this \texttt{Rcode} in (R)quantlib, with the following output:

Summary of pricing results for Bermudan Swaption

Price (in bp) of Bermudan swaption is 24.92137
Strike is NULL (ATM strike is 0.05)
Model used is: Hull-White using analytic formulas
Calibrated model parameters are:
a = 0.04641
sigma = 0.005869

* Click to open or download.
This modified code* can be used in particular the pricing of ordinary swaptions, with the output:

Summary of pricing results for Bermudan Swaption

Price (in bp) of Bermudan swaption is 22.45436
Strike is NULL (ATM strike is 0.05)
Model used is: Hull-White using analytic formulas
Calibrated model parameters are:
a = 0.07107
sigma = 0.006018

Exercises

Exercise 19.1 Consider a floorlet on a three-month LIBOR rate in nine month’s time, with a notional principal amount of $1 million. The term structure is flat at 3.95% per year with discrete compounding, and the volatility of the forward LIBOR rate in nine months is 10%. The annual floor rate with continuous annual compounding is 4.5% and the floorlet price is quoted in basis points (one basis point = 0.01%).

a) What are the key assumptions on the LIBOR rate in nine month in order to apply Black’s formula to price this floorlet?
b) Compute the price of this floorlet using Black’s formula as an application of Proposition 19.6 and (19.20), using the functions \(\Phi(d_+) \) and \(\Phi(d_-) \).

Exercise 19.2 Consider a payer swaption giving its holder the right, but not the obligation, to enter into a 3-year annual pay swap in four years, where a fixed rate of 5% will be paid and the LIBOR rate will be received. Assume that the yield curve is flat at 5% with continuous annual compounding and the volatility of the swap rate is 20%. The notional principal is $10 millions and the swaption price is quoted in basis points.

a) What are the key assumptions in order to apply Black’s formula to value this swaption?
b) Compute the price of this swaption using Black’s formula as an application of Proposition 19.13.

Exercise 19.3 Consider two bonds with maturities \(T_1 \) and \(T_2 \), \(T_1 < T_2 \), which follow the stochastic differential equations

\[
dP(t, T_1) = r_t P(t, T_1) dt + \xi_1(t) P(t, T_1) dW_t
\]

* Click to open or download.
and
\[dP(t, T_2) = r_t P(t, T_2) dt + \zeta_2(t) P(t, T_2) dW_t. \]

a) Using Itô calculus, show that the forward process \(P(t, T_2)/P(t, T_1) \) is a driftless geometric Brownian motion driven by \(d\hat{W}_t := dW_t - \zeta_1(t) dt \) under the \(T_1 \)-forward measure \(\hat{P} \).

b) Compute the price \(\mathbb{E}^* \left[e^{-\int_t^{T_1} r_s ds} (K - P(T_1, T_2))^+ \bigg| \mathcal{F}_t \right] \) of a bond put option at time \(t \in [0, T_1] \) using change of numéraire and the Black-Scholes formula.

Hint: Given \(X \) a centered Gaussian random variable with mean \(m \) and variance \(v^2 \) given \(\mathcal{F}_t \), we have:

\[
\mathbb{E} \left[(\kappa - e^{-X})^+ \bigg| \mathcal{F}_t \right] = \kappa \Phi \left(\frac{v}{2} + \frac{1}{v} (m + v^2/2 - \log \kappa) \right) - e^{m+v^2/2} \Phi \left(-\frac{v}{2} + \frac{1}{v} (m + v^2/2 - \log \kappa) \right). \tag{19.37}
\]

Exercise 19.4 Given two bonds with maturities \(T, S \) and prices \(P(t, T) \), \(P(t, S) \), consider the LIBOR rate

\[L(t, T, S) := \frac{P(t, T) - P(t, S)}{(S - T) P(t, S)} \]

at time \(t \in [0, T] \), modeled as

\[dL(t, T, S) = \mu_t L(t, T, S) dt + \sigma L(t, T, S) dW_t, \quad 0 \leq t \leq T, \tag{19.38} \]

where \((W_t)_{t \in [0, T]} \) is a standard Brownian motion under the risk-neutral probability measure \(\hat{P}^* \), \(\sigma > 0 \) is a constant, and \((\mu_t)_{t \in [0, T]} \) is an adapted process. Let

\[F_t = \mathbb{E}^* \left[e^{-\int_t^S r_s ds} (\kappa - L(T, T, S))^+ \bigg| \mathcal{F}_t \right] \]

denote the price at time \(t \) of a floorlet option with strike level \(\kappa \), maturity \(T \), and payment date \(S \).

a) Rewrite the value of \(F_t \) using the forward measure \(\hat{P}_S \) with maturity \(S \).
b) What is the dynamics of \(L(t, T, S) \) under the forward measure \(\hat{P}_S \)?

c) Write down the value of \(F_t \) using the Black-Scholes formula.

Hint. Given \(X \) a centered Gaussian random variable with variance \(v^2 \) we have

\[
\mathbb{E}^*[(\kappa - e^{m+X})^+] = \kappa \Phi(-(m - \log \kappa)/v) - e^{m+v^2/2} \Phi(-v - (m - \log \kappa)/v),
\]

This version: June 7, 2020

https://www.ntu.edu.sg/home/nprivault/index.html
where \(\Phi \) denotes the Gaussian cumulative distribution function.

Exercise 19.5 Jamshidian’s trick (Jamshidian (1989)). Consider a family \((P(t, T_k))_{k=i,\ldots,j}\) of bond prices defined from a short rate process \((r_t)_{t \in \mathbb{R}_+}\). We assume that the bond prices are functions \(P(T_i, T_{k+1}) = F_{k+1}(T_i, r_{T_i})\) of \(r_{T_i}\) that are increasing in the variable \(r_{T_i}\), for all \(k = i, i+1, \ldots, j-1\), where \((r_t)_{t \in \mathbb{R}_+}\) denotes the short rate process.

a) Compute the price \(P(t, T_i, T_j)\) of the annuity numeraire paying coupons \(c_{i+1}, \ldots, c_j\) at times \(T_{i+1}, \ldots, T_j\) in terms of the bond prices \(P(t, T_{i+1}), \ldots, P(t, T_j)\).

b) Show that the payoff
\[
\left(P(T_i, T_i) - P(T_i, T_j) - \kappa P(T_i, T_i, T_j) \right)^+
\]
of a European swaption can be rewritten as
\[
\left(1 - \kappa \sum_{k=i}^{j-1} \tilde{c}_{k+1} P(T_i, T_{k+1}) \right)^+,
\]
by writing \(\tilde{c}_k\) in terms of \(c_k\), \(k = i+1, \ldots, j\).

c) Assuming that the bond prices are functions \(P(T_i, T_{k+1}) = F_{k+1}(T_i, r_{T_i})\) of \(r_{T_i}\) that are increasing in the variable \(r_{T_i}\), for all \(k = i, \ldots, j-1\), show, choosing \(\gamma_\kappa\) such that
\[
\kappa \sum_{k=i}^{j-1} c_{k+1} F_{k+1}(T_i, \gamma_\kappa) = 1,
\]
that the European swaption with payoff
\[
\left(P(T_i, T_i) - P(T_i, T_j) - \kappa P(T_i, T_i, T_j) \right)^+ = \left(1 - \kappa \sum_{k=i}^{j-1} c_{k+1} P(T_i, T_{k+1}) \right)^+,
\]
where \(c_j\) contains the final coupon payment, can be priced as a weighted sum of bond put options under the forward measure \(\hat{\mathbb{P}}_i\) with numéraire \(N_t^{(i)} := P(t, T_i)\).

Exercise 19.6 Path freezing. Consider \(n\) bonds with prices \((P(t, T_i))_{i=1,\ldots,n}\) and the bond option with payoff
\[
\left(\sum_{i=2}^{n} c_i P(T_0, T_i) - \kappa P(T_0, T_1) \right)^+ = P(T_0, T_1) (X_{T_0} - \kappa)^+,
\]
642

This version: June 7, 2020
https://www.ntu.edu.sg/home/nprivault/index.html
where \(N_t := P(t, T_1) \) is taken as numeraire and

\[
X_t := \frac{1}{P(t, T_1)} \sum_{i=2}^{n} c_i P(t, T_i) = \sum_{i=2}^{n} c_i \hat{P}(t, T_i), \quad 0 \leq t \leq T_1.
\]

with \(\hat{P}(t, T_i) := P(t, T_i)/P(t, T_1), \ i = 2, 3, \ldots, n. \)

a) Assuming that the deflated bond price \(\hat{P}(t, T_i) \) has the (martingale) dynamics \(d\hat{P}(t, T_i) = \sigma_i(t) \hat{P}(t, T_i) d\hat{W}_t \) under the forward measure \(\hat{P}_1 \), write down the dynamics of \(X_t \) as \(dX_t = \sigma_t X_t d\hat{W}_t \), where \(\sigma_t \) is to be computed explicitly.

b) Approximating \(\hat{P}(t, T_i) \) by \(\hat{P}(0, T_i) \) and \(P(t, T_2, T_n) \) by \(P(0, T_2, T_n) \), find a deterministic approximation \(\tilde{\sigma}(t) \) of \(\sigma_t \), and deduce an expression of the option price

\[
\mathbb{E}^* \left[e^{-\int_0^{T_1} r_s ds} \left(\sum_{i=2}^{n} c_i P(T_0, T_i) - \kappa P(T_0, T_1) \right)^+ \right] = P(0, T_1) \mathbb{E}[X_{T_0} - \kappa]^+\]

using the Black-Scholes formula.

Hint: Given \(X \) a centered Gaussian random variable with variance \(\nu^2 \), we have:

\[
\mathbb{E} \left[(xe^{-v^2/2} - \kappa)^+ \right] = x\Phi(v/2 + \log(\kappa/x)/\nu) - \kappa\Phi(-v/2 + \log(\kappa/x)/\nu).
\]

Exercise 19.7 (Exercise 17.3 continued). We work in the short rate model

\[
dr_t = \sigma dB_t,
\]

where \((B_t)_{t \in \mathbb{R}_+} \) is a standard Brownian motion under \(\mathbb{P}^* \), and \(\hat{P}_2 \) is the forward measure defined by

\[
\frac{d\hat{P}_2}{d\mathbb{P}^*} = \frac{1}{P(0, T_2)} e^{-\int_0^{T_2} r_s ds}.
\]

a) State the expressions of \(\zeta_1(t) \) and \(\zeta_2(t) \) in

\[
\frac{dP(t, T_i)}{P(t, T_i)} = \kappa_i dt + \zeta_i(t) dB_t, \quad i = 1, 2,
\]

and the dynamics of the \(P(t, T_1)/P(t, T_2) \) under \(\hat{P}_2 \), where \(P(t, T_1) \) and \(P(t, T_2) \) are bond prices with maturities \(T_1 \) and \(T_2 \).

Hint. Use Exercise 17.3 and the relation (17.23).
b) State the expression of the forward rate \(f(t, T_1, T_2) \).

c) Compute the dynamics of \(f(t, T_1, T_2) \) under the forward measure \(\hat{P}_2 \) with

\[
\frac{d\hat{P}_2}{d\hat{P}^*} = \frac{1}{P(0, T_2)} e^{-\int_0^{T_2} r_s ds}.
\]

d) Compute the price

\[(T_2 - T_1) \mathbb{E}^* \left[e^{-\int_t^{T_2} r_s ds} (f(T_1, T_1, T_2) - \kappa)^+ \bigg| \mathcal{F}_t \right]
\]

of a cap at time \(t \in [0, T_1] \), using the expectation under the forward measure \(\hat{P}_2 \).

e) Compute the dynamics of the swap rate process

\[S(t, T_1, T_2) = \frac{P(t, T_1) - P(t, T_2)}{(T_2 - T_1) P(t, T_2)}, \quad t \in [0, T_1],\]

under \(\hat{P}_2 \).

f) Using (19.27), compute the swaption price

\[(T_2 - T_1) \mathbb{E}^* \left[e^{-\int_t^{T_1} r_s ds} P(T_1, T_2) (S(T_1, T_1, T_2) - \kappa)^+ \bigg| \mathcal{F}_t \right]
\]

on the swap rate \(S(T_1, T_1, T_2) \) using the expectation under the forward swap measure \(\hat{P}_{1,2} \).

Exercise 19.8 Consider three zero-coupon bonds \(P(t, T_1) \), \(P(t, T_2) \) and \(P(t, T_3) \) with maturities \(T_1 = \delta \), \(T_2 = 2\delta \) and \(T_3 = 3\delta \) respectively, and the forward LIBOR \(L(t, T_1, T_2) \) and \(L(t, T_2, T_3) \) defined by

\[L(t, T_i, T_{i+1}) = \frac{1}{\delta} \left(\frac{P(t, T_i)}{P(t, T_{i+1})} - 1 \right), \quad i = 1, 2.
\]

Assume that \(L(t, T_1, T_2) \) and \(L(t, T_2, T_3) \) are modeled in the BGM model by

\[
\frac{dL(t, T_1, T_2)}{L(t, T_1, T_2)} = e^{-at} d\tilde{W}_t^2, \quad 0 \leq t \leq T_1,
\]

and \(L(t, T_2, T_3) = b, \ 0 \leq t \leq T_2 \), for some constants \(a, b > 0 \), where \(\tilde{W}_t^2 \) is a standard Brownian motion under the forward rate measure \(\hat{P}_2 \) defined by

\[
\frac{d\hat{P}_2}{d\hat{P}^*} = \frac{e^{-\int_0^{T_2} r_s ds}}{P(0, T_2)}.
\]

a) Compute \(L(t, T_1, T_2), 0 \leq t \leq T_2 \) by solving Equation (19.39).
b) Show that the price at time t of the caplet with strike level κ can be written as

$$\mathbb{E}^* \left[e^{-\int_t^{T_2} r_s ds} (L(T_1, T_1, T_2) - \kappa)^+ \mid \mathcal{F}_t \right] = P(t, T_2) \mathbb{E}_2 \left[(L(T_1, T_1, T_2) - \kappa)^+ \mid \mathcal{F}_t \right],$$

where \mathbb{E}_2 denotes the expectation under the forward measure $\hat{\mathbb{P}}_2$.

c) Using the hint below, compute the price at time t of the caplet with strike level κ on $L(T_1, T_1, T_2)$.

d) Compute

$$\frac{P(t, T_1)}{P(t, T_1, T_3)}, \quad 0 \leq t \leq T_1,$n and

$$\frac{P(t, T_3)}{P(t, T_1, T_3)}, \quad 0 \leq t \leq T_2,$n

in terms of b and $L(t, T_1, T_2)$, where $P(t, T_1, T_3)$ is the annuity numéraire

$$P(t, T_1, T_3) = \delta P(t, T_2) + \delta P(t, T_3), \quad 0 \leq t \leq T_2.$n
e) Compute the dynamics of the swap rate

$$t \mapsto S(t, T_1, T_3) = \frac{P(t, T_1) - P(t, T_3)}{P(t, T_1, T_3)}, \quad 0 \leq t \leq T_1,$n\text{i.e. show that we have}

$$dS(t, T_1, T_3) = \sigma_{1,3}(t) S(t, T_1, T_3) d\tilde{W}_t^2,$n$$

where $\sigma_{1,3}(t)$ is a stochastic process to be determined.
f) Using the Black-Scholes formula, compute an approximation of the swap-tran price

$$\mathbb{E}^* \left[e^{-\int_t^{T_1} r_s ds} P(T_1, T_1, T_3) (S(T_1, T_1, T_3) - \kappa)^+ \mid \mathcal{F}_t \right] = P(t, T_1, T_3) \mathbb{E}_2 \left[(S(T_1, T_1, T_3) - \kappa)^+ \mid \mathcal{F}_t \right],$$

at time $t \in [0, T_1]$. You will need to approximate $\sigma_{1,3}(s)$, $s \geq t$, by “freezing” all random terms at time t.

Hint. Given X a centered Gaussian random variable with variance v^2 we have

$$\mathbb{E}^* \left[(e^{m+X} - \kappa)^+ \right] = e^{m+v^2/2} \Phi(v + (m - \log \kappa)/v) - \kappa \Phi((m - \log \kappa)/v),$$

where Φ denotes the Gaussian cumulative distribution function.

Exercise 19.9 Bond option hedging. Consider a portfolio allocation $(\xi^T_t, \xi^S_t)_{t \in [0, T]}$ made of two bonds with maturities T, S, and value...
\[V_t = \xi_t^P P(t, T) + \xi_t^S P(t, S), \quad 0 \leq t \leq T, \]

at time \(t \). We assume that the portfolio is self-financing, \textit{i.e.}
\[dV_t = \xi_t^T dP(t, T) + \xi_t^S dP(t, S), \quad 0 \leq t \leq T, \tag{19.40} \]
and that it \textit{hedges} the claim payoff \((P(T, S) - \kappa)^+\), so that
\[V_t = \mathbb{E}^* \left[e^{-\int_t^T r_s ds} (P(T, S) - \kappa)^+ \mid \mathcal{F}_t \right] \\
= P(t, T) \mathbb{E}_T \left[(P(T, S) - \kappa)^+ \mid \mathcal{F}_t \right], \quad 0 \leq t \leq T. \]
a) Show that we have
\[\mathbb{E}^* \left[e^{-\int_t^T r_s ds} (P(T, S) - K)^+ \mid \mathcal{F}_t \right] \\
= P(0, T) \mathbb{E}_T \left[(P(T, S) - K)^+ \right] + \int_0^t \xi_t^P dP(t, S) + \int_0^t \xi_t^S dP(t, S). \]
b) Show that under the self-financing condition (19.40), the deflated portfolio value \(\tilde{V}_t = e^{-\int_0^t r_s ds} V_t \) satisfies
\[d\tilde{V}_t = \xi_t^P d\tilde{P}(t, T) + \xi_t^S d\tilde{P}(t, S), \]
where
\[\tilde{P}(t, T) := e^{-\int_0^t r_s ds} P(t, T), \quad t \in [0, T], \]
and
\[\tilde{P}(t, S) := e^{-\int_0^t r_s ds} P(t, S), \quad t \in [0, S], \]
denote the discounted bond prices.
c) From now on we work in the framework of Proposition 19.3, and we let the function \(C(x, v) \) be defined by
\[C(X_t, v(t, T)) := \mathbb{E}_T \left[(P(T, S) - K)^+ \mid \mathcal{F}_t \right], \]
where \(X_t \) is the forward price \(X_t := P(t, S)/P(t, T), \, t \in [0, T], \) and
\[v^2(t, T) := \int_t^T \left| \sigma_s^S - \sigma_s^T \right|^2 ds. \]
Show that
\[\mathbb{E}_T \left[(P(T, S) - K)^+ \mid \mathcal{F}_t \right] = \mathbb{E}_T \left[(P(T, S) - K)^+ \right] \\
+ \int_0^t \frac{\partial C}{\partial x}(X_u, v(u, T)) dX_u, \quad t \geq 0. \]
\textit{Hint:} Use the martingale property and the Itô formula.
d) Show that the deflated portfolio value \(\tilde{V}_t = V_t / P(t, T) \) satisfies
Pricing of Interest Rate Derivatives

\[d\hat{V}_t = \frac{\partial C}{\partial x}(X_t, v(t,T))dX_t \]
\[= \frac{P(t,S)}{P(t,T)} \frac{\partial C}{\partial x}(X_t, v(t,T))(\sigma^S_t - \sigma^T_t)dB_t^{\mathcal{T}}. \]

e) Show that
\[dV_t = P(t,S) \frac{\partial C}{\partial x}(X_t, v(t,T))(\sigma^S_t - \sigma^T_t)dB_t + \hat{V}_t dP(t,T). \]
f) Show that
\[d\tilde{V}_t = \tilde{P}(t,S) \frac{\partial C}{\partial x}(X_t, v(t,T))(\sigma^S_t - \sigma^T_t)dB_t + \hat{V}_t d\tilde{P}(t,T). \]
g) Compute the hedging strategy \((\xi^T_t, \xi^S_t)_{t \in [0,T]}\) of the bond option.
h) Show that
\[\frac{\partial C}{\partial x}(x,v) = \Phi \left(\frac{\log(x/K) + \tau v^2/2}{\sqrt{\tau}v} \right), \]
and compute the hedging strategy \((\xi^T_t, \xi^S_t)_{t \in [0,T]}\) in terms of the normal cumulative distribution function \(\Phi\).

Exercise 19.10 Consider a LIBOR rate \(L(t,T,S), t \in [0,T]\), modeled as
\[dL(t,T,S) = \mu_t L(t,T,S)dt + \sigma(t)L(t,T,S)dW_t, \]
where \((W_t)_{t \in [0,T]}\) is a standard Brownian motion under the risk-neutral probability measure \(\mathbb{P}^*\), \((\mu_t)_{t \in [0,T]}\) is an adapted process, and \(\sigma(t) > 0\) is a deterministic volatility function of time \(t\).

a) What is the dynamics of \(L(t,T,S)\) under the forward measure \(\hat{\mathbb{P}}\) with numéraire \(N_t := P(t,S)\)?
b) Rewrite the price
\[\mathbb{E}^* \left[e^{-\int_t^S r_s ds} \phi(L(T,T,S)) | \mathcal{F}_t \right] \] (19.41)
at time \(t \in [0,T]\) of an option with payoff function \(\phi\) using the forward measure \(\hat{\mathbb{P}}\).
c) Write down the above option price (19.41) using an integral.

Exercise 19.11 Given \(n\) bonds with maturities \(T_1, T_2, \ldots, T_n\), consider the annuity numéraire
\[P(t,T_i,T_j) = \sum_{k=i}^{j-1} (T_{k+1} - T_k)P(t,T_{k+1}) \]
and the swap rate
\[\diamond \]
d) Apply the above to the computation at time $\frac{1}{2}$.

b) What is the dynamics of $S(t, T_i, T_j)$? Give this as a centered Gaussian random variable with variance v^2 we have

$$
\mathbb{E}[\Phi(-v)] = \phi(-v)
$$

where ϕ denotes the Gaussian cumulative distribution function.

Exercise 19.12 Consider a bond market with two bonds with maturities T_1, T_2, whose prices $P(t, T_1)$, $P(t, T_2)$ at time t are given by

$$
\frac{dP(t, T_1)}{P(t, T_1)} = r_t dt + \zeta_1(t) dB_t, \quad \frac{dP(t, T_2)}{P(t, T_2)} = r_t dt + \zeta_2(t) dB_t,
$$

where $(r_t)_{t \in \mathbb{R}_+}$ is a short-term interest rate process, $(B_t)_{t \in \mathbb{R}_+}$ is a standard Brownian motion generating a filtration $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$, and $\zeta_1(t)$, $\zeta_2(t)$ are volatility processes. The LIBOR rate $L(t, T_1, T_2)$ is defined by

$$
L(t, T_1, T_2) = \frac{P(t, T_1) - P(t, T_2)}{P(t, T_2)}.
$$

Recall that a caplet on the LIBOR market can be priced at time $t \in [0, T_1]$ as

$$
648
$$

This version: June 7, 2020

https://www.ntu.edu.sg/home/nprivault/index.html
Pricing of Interest Rate Derivatives

\[
\mathbb{E} \left[e^{-\int_{t}^{T_2} r_s ds} (L(T_1, T_1, T_2) - \kappa)^+ \bigg| \mathcal{F}_t \right] = P(t,T_2) \mathbb{E} \left[(L(T_1, T_1, T_2) - \kappa)^+ \bigg| \mathcal{F}_t \right],
\]

(19.44)

under the forward measure \(\hat{\mathbb{P}} \) defined by

\[
\frac{d\hat{\mathbb{P}}}{d\mathbb{P}^*} = e^{-\int_0^{T_1} r_s ds} \frac{P(T_1,T_2)}{P(0,T_2)},
\]

under which

\[
\hat{B}_t := B_t - \int_0^t \zeta_2(s) ds, \quad t \in \mathbb{R}_+ \quad (19.45)
\]

is a standard Brownian motion.

In the sequel we let \(L_t = L(t,T_1,T_2) \) for simplicity of notation.

a) Using Itô calculus, show that the LIBOR rate satisfies

\[
dL_t = L_t \sigma(t) d\hat{B}_t, \quad 0 \leq t \leq T_1 \quad (19.46)
\]

where the LIBOR rate volatility is given by

\[
\sigma(t) = \frac{P(t,T_1)(\zeta_1(t) - \zeta_2(t))}{P(t,T_1) - P(t,T_2)}.
\]

b) Solve the equation (19.46) on the interval \([t,T_1]\), and compute \(L_{T_1} \) from the initial condition \(L_t \).

c) Assuming that \(\sigma(t) \) in (19.46) is a deterministic volatility function of time \(t \), show that the price

\[
P(t,T_2) \mathbb{E} \left[(L_{T_1} - \kappa)^+ \bigg| \mathcal{F}_t \right]
\]

of the caplet can be written as \(P(t,T_2)C(L_t,v(t,T_1)) \), where \(v^2(t,T_1) = \int_t^{T_1} |\sigma(s)|^2 ds \), and \(C(t,v(t,T_1)) \) is a function of \(L_t \) and \(v(t,T_1) \).

d) Consider a portfolio allocation \((\xi^{(1)}_t,\xi^{(2)}_t)_{t \in [0,T_1]} \) made of bonds with maturities \(T_1, T_2 \) and value

\[
V_t = \xi^{(1)}_t P(t,T_1) + \xi^{(2)}_t P(t,T_2),
\]

at time \(t \in [0,T_1] \). We assume that the portfolio is self-financing, i.e.

\[
dV_t = \xi^{(1)}_t dP(t,T_1) + \xi^{(2)}_t dP(t,T_2), \quad 0 \leq t \leq T_1 \quad (19.47)
\]

and that it hedges the claim payoff \((L_{T_1} - \kappa)^+ \), so that
h) Show that
\[V_t = \mathbb{E}\left[e^{-\int_t^{T_1} r_s ds} (P(T_1, T_2) (L_{T_1} - \kappa))^+ \mid \mathcal{F}_t \right] \]
\[= P(t, T_2) \mathbb{E}[(L_{T_1} - \kappa)^+ \mid \mathcal{F}_t], \]
\(0 \leq t \leq T_1. \) Show that we have
\[\mathbb{E}\left[e^{-\int_t^{T_1} r_s ds} (P(T_1, T_2) (L_{T_1} - \kappa))^+ \mid \mathcal{F}_t \right] \]
\[= P(0, T_2) \mathbb{E}[(L_{T_1} - \kappa)^+] + \int_0^t \xi_s^{(1)} dP(s, T_1) + \int_0^t \xi_s^{(2)} dP(s, T_1), \]
\(0 \leq t \leq T_1. \)
e) Show that under the self-financing condition (19.47), the discounted portfolio value \(\tilde{V}_t = e^{-\int_0^t r_s ds} V_t \) satisfies
\[d\tilde{V}_t = \xi_t^{(1)} d\tilde{P}(t, T_1) + \xi_t^{(2)} d\tilde{P}(t, T_2), \]
where \(\tilde{P}(t, T_1) := e^{-\int_0^t r_s ds} P(t, T_1) \) and \(\tilde{P}(t, T_2) := e^{-\int_0^t r_s ds} P(t, T_2) \) denote the discounted bond prices.
f) Show that
\[\mathbb{E}[(L_{T_1} - \kappa)^+ \mid \mathcal{F}_t] = \mathbb{E}[(L_{T_1} - \kappa)^+] + \int_0^t \frac{\partial C}{\partial x}(L_t, v(t, T_1)) dL_t, \]
and that the deflated portfolio value \(V_t = \tilde{V}_t / P(t, T_2) \) satisfies
\[d\tilde{V}_t = \frac{\partial C}{\partial x}(L_t, v(t, T_1)) dL_t = L_t \frac{\partial C}{\partial x}(L_t, v(t, T_1)) \sigma(t) dB_t + \tilde{V}_t d\tilde{P}(t, T_2). \]

Hint: use the martingale property and the Itô formula.
g) Show that
\[dV_t = (P(t, T_1) - P(t, T_2)) \frac{\partial C}{\partial x}(L_t, v(t, T_1)) \sigma(t) dB_t + \tilde{V}_t d\tilde{P}(t, T_2). \]
h) Show that
\[d\tilde{V}_t = \frac{\partial C}{\partial x}(L_t, v(t, T_1)) d(\tilde{P}(t, T_1) - \tilde{P}(t, T_2)) \]
\[+ \left(\tilde{V}_t - L_t \frac{\partial C}{\partial x}(L_t, v(t, T_1)) \right) d\tilde{P}(t, T_2), \]
and deduce the values of the hedging portfolio allocation \((\xi_t^{(1)}, \xi_t^{(2)})_{t \in \mathbb{R}_+.} \).

Exercise 19.13 Consider a bond market with tenor structure \(\{T_i, \ldots, T_j\} \) and \(j - i + 1 \) bonds with maturities \(T_i, \ldots, T_j \), whose prices \(P(t, T_i), \ldots P(t, T_j) \)
Pricing of Interest Rate Derivatives

at time t are given by

$$\frac{dP(t, T_k)}{P(t, T_k)} = r_t dt + \zeta_k(t) dB_t, \quad k = i, \ldots, j,$$

where $(r_t)_{t \in \mathbb{R}_+}$ is a short-term interest rate process and $(B_t)_{t \in \mathbb{R}_+}$ denotes a standard Brownian motion generating a filtration $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$, and $\zeta_i(t), \ldots, \zeta_j(t)$ are volatility processes.

The swap rate $S(t, T_i, T_j)$ is defined by

$$S(t, T_i, T_j) = \frac{P(t, T_i) - P(t, T_j)}{P(t, T_i, T_j)},$$

where

$$P(t, T_i, T_j) = \sum_{k=i}^{j-1}(T_{k+1} - T_k)P(t, T_{k+1})$$

is the annuity numéraire. Recall that a swaption on the LIBOR market can be priced at time $t \in [0, T_i]$ as

$$\mathbb{E}^* \left[e^{-\int_t^{T_i} r_s ds} \left(\sum_{k=i}^{j-1}(T_{k+1} - T_k)P(T_i, T_{k+1})(S(T_i, T_k, T_{k+1}) - \kappa) \right)^+ \bigg| \mathcal{F}_t \right]$$

$$= P(t, T_i, T_j) \mathbb{E}_{i,j} \left[(S(T_i, T_j) - \kappa)^+ \big| \mathcal{F}_t \right], \quad (19.48)$$

under the forward swap measure $\hat{P}_{i,j}$ defined by

$$\frac{d\hat{P}_{i,j}}{d\mathbb{P}^*} = e^{-\int_T^{T_i} r_s ds} \frac{P(T_i, T_j)}{P(0, T_i, T_j)}, \quad 1 \leq i < j \leq n,$$

under which

$$\tilde{B}_t^{i,j} := B_t - \sum_{k=i}^{j-1}(T_{k+1} - T_k) \frac{P(t, T_{k+1})}{P(t, T_i, T_j)} \zeta_{k+1}(t) dt \quad (19.49)$$

is a standard Brownian motion. Recall that the swap rate can be modeled as

$$dS(t, T_i, T_j) = S(t, T_i, T_j)\sigma_{i,j}(t)d\tilde{B}_t^{i,j}, \quad 0 \leq t \leq T_i, \quad (19.50)$$

where the swap rate volatilities are given by

$$\sigma_{i,j}(t) = \sum_{l=i}^{j-1}(T_{l+1} - T_l) \frac{P(t, T_{l+1})}{P(t, T_i, T_j)} (\zeta_l(t) - \zeta_{l+1}(t)) \quad (19.51)$$
b) Assuming that

\[
\begin{align*}
&+ \frac{P(t, T_j)}{P(t, T_i) - P(t, T_j)} (\zeta_i(t) - \zeta_j(t))
\end{align*}
\]

\(1 \leq i, j \leq n\), cf. e.g. Proposition 10.8 in Privault (2009). In the sequel we denote \(S_t = S(t, T_i, T_j)\) for simplicity of notation.

a) Solve the equation (19.50) on the interval \([t, T_i]\), and compute \(S(T_i, T_i, T_j)\) from the initial condition \(S(t, T_i, T_j)\).

b) Assuming that \(\sigma_{i,j}(t)\) is a deterministic volatility function of time \(t\) for \(1 \leq i, j \leq n\), show that the price (19.32) of the swaption can be written as

\[
P(t, T_i, T_j)C(S_t, v(t, T_i)),
\]

where

\[
v^2(t, T_i) = \int_t^{T_i} |\sigma_{i,j}(s)|^2 ds,
\]

and \(C(x, v)\) is a function to be specified using the Black-Scholes formula \(B((x, K, \sigma, r, \tau), \text{with})\)

\[
\mathbb{E}[(x e^{m \tau} - K)^+] = \Phi(v + (m + \log(x/K))/v) - K \Phi((m + \log(x/K))/v),
\]

where \(X\) is a centered Gaussian random variable with mean \(m = r \tau - v^2/2\) and variance \(v^2\).

c) Consider a portfolio allocation \((\xi_t^{(i)}, \ldots, \xi_t^{(j)})_{t \in [0, T_i]}\) made of bonds with maturities \(T_i, \ldots, T_j\) and value

\[
V_t = \sum_{k=i}^{j} \xi_t^{(k)} P(t, T_k),
\]

at time \(t \in [0, T_i]\). We assume that the portfolio is self-financing, i.e.

\[
dV_t = \sum_{k=i}^{j} \xi_t^{(k)} dP(t, T_k), \quad 0 \leq t \leq T_i,
\]

and that it hedges the claim payoff \((S(T_i, T_i, T_j) - \kappa)^+\), so that

\[
V_t = \mathbb{E}^* \left[e^{-\int_t^{T_i} r_s ds} \left(\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(T_i, T_{k+1}) (L(T_i, T_k, T_{k+1}) - \kappa)\right)^+ | \mathcal{F}_t\right]
\]

\[
= P(t, T_i, T_j) \mathbb{E}_{i,j} [(S(T_i, T_i, T_j) - \kappa)^+ | \mathcal{F}_t],
\]

\(0 \leq t \leq T_i\). Show that

\[
\mathbb{E}^* \left[e^{-\int_t^{T_i} r_s ds} \left(\sum_{k=i}^{j-1} (T_{k+1} - T_k) P(T_i, T_{k+1}) (L(T_i, T_k, T_{k+1}) - \kappa)\right)^+ | \mathcal{F}_t\right]
\]

652
Pricing of Interest Rate Derivatives

\[
P(0, T_i, T_j) \mathbb{E}_{i,j} \left[(S(T_i, T_i, T_j) - \kappa)^+ \right] + \sum_{k=i}^{j} \int_{0}^{t} \xi_s^{(k)} dP(s, T_i),
\]

\(0 \leq t \leq T_i.\)

d) Show that under the self-financing condition (19.52), the discounted portfolio value \(\tilde{V}_t = e^{-\int_{0}^{t} r_s ds} V_t\) satisfies

\[
d\tilde{V}_t = \sum_{k=i}^{j} \xi_t^{(k)} d\tilde{P}(t, T_k),
\]

where \(\tilde{P}(t, T_k) = e^{-\int_{0}^{t} r_s ds} P(t, T_k), k = i, i+1, \ldots, j,\) denote the discounted bond prices.

e) Show that

\[
\mathbb{E}_{i,j} \left[(S(T_i, T_i, T_j) - \kappa)^+ \mid \mathcal{F}_t \right] = \mathbb{E}_{i,j} \left[(S(T_i, T_i, T_j) - \kappa)^+ \right] + \int_{0}^{t} \frac{\partial C}{\partial x}(S_u, v(u, T_i)) dS_u.
\]

Hint: use the martingale property and the Itô formula.

f) Show that the deflated portfolio value \(\tilde{V}_t = V_t / P(t, T_i, T_j)\) satisfies

\[
d\tilde{V}_t = \frac{\partial C}{\partial x}(S_t, v(t, T_i)) dS_t = S_t \frac{\partial C}{\partial x}(S_t, v(t, T_i)) \sigma_t^{i,j} d\tilde{B}_t^{i,j}.
\]

g) Show that

\[
dV_t = (P(t, T_i) - P(t, T_j)) \frac{\partial C}{\partial x}(S_t, v(t, T_i)) \sigma_t^{i,j} dB_t + \tilde{V}_t dP(t, T_i, T_j).
\]

h) Show that

\[
dV_t = S_t \xi_t(t) \frac{\partial C}{\partial x}(S_t, v(t, T_i)) \sum_{k=i}^{j-1} (T_{k+1} - T_k) P(t, T_{k+1}) dB_t
\]

\[
+ (\tilde{V}_t - S_t \frac{\partial C}{\partial x}(S_t, v(t, T_i))) \sum_{k=i}^{j-1} (T_{k+1} - T_k) P(t, T_{k+1}) \xi_{k+1}(t) dB_t
\]

\[
+ \frac{\partial C}{\partial x}(S_t, v(t, T_i)) P(t, T_j) (\xi_i(t) - \xi_j(t)) dB_t.
\]

i) Show that

\[
d\tilde{V}_t = \frac{\partial C}{\partial x}(S_t, v(t, T_i)) d(\tilde{P}(t, T_i) - \tilde{P}(t, T_j))
\]

\[
+ (\tilde{V}_t - S_t \frac{\partial C}{\partial x}(S_t, v(t, T_i))) d\tilde{P}(t, T_i, T_j).
\]
j) Show that
\[
\frac{\partial C}{\partial x}(x,v(t,T_i)) = \Phi \left(\log \left(\frac{x}{K} \right) + \frac{v(t,T_i)}{2} \right).
\]

k) Show that we have
\[
\begin{aligned}
d\tilde{V}_t &= \Phi \left(\frac{\log(S_t/K)}{v(t,T_i)} + \frac{v(t,T_i)}{2} \right) d(\tilde{P}(t,T_i) - \tilde{P}(t,T_j)) \\
&\quad - \kappa \Phi \left(\frac{\log(S_t/K)}{v(t,T_i)} - \frac{v(t,T_i)}{2} \right) d\tilde{P}(t,T_i,T_j).
\end{aligned}
\]

l) Show that the hedging strategy is given by
\[
\begin{aligned}
\xi^{(i)}_t &= \Phi \left(\frac{\log(S_t/K)}{v(t,T_i)} + \frac{v(t,T_i)}{2} \right), \\
\xi^{(j)}_t &= -\Phi \left(\frac{\log(S_t/K)}{v(t,T_i)} + \frac{v(t,T_i)}{2} \right) - \kappa (T_j - T_{j-1}) \Phi \left(\frac{\log(S_t/K)}{v(t,T_i)} - \frac{v(t,T_i)}{2} \right), \\
\end{aligned}
\]
and
\[
\xi^{(k)}_t = -\kappa (T_{k+1} - T_k) \Phi \left(\frac{\log(S_t/K)}{v(t,T_i)} - \frac{v(t,T_i)}{2} \right), \quad i \leq k \leq j - 2.
\]