Chapter 5
Continuous-Time Market Model

In this chapter we review the notions of assets, self-financing portfolios, risk-neutral probability measures, and arbitrage in continuous time. We also derive the Black-Scholes partial differential equation (PDE) for self-financing portfolios, and we solve this equation using the heat kernel method.

5.1 Asset price modeling

The prices at time $t \in \mathbb{R}_+$ of $d + 1$ assets numbered $n^0, 0, 1, \ldots, d$ is denoted by the random vector

$$\vec{S}_t = (S_t^{(0)}, S_t^{(1)}, \ldots, S_t^{(d)})$$

which forms a stochastic process $(\vec{S}_t)_{t \in \mathbb{R}_+}$. As in discrete time, the asset $n^0 0$ is a riskless asset (of savings account type) yielding an interest rate r, i.e. we have

$$S_t^{(0)} = S_0^{(0)} e^{rt}, \quad t \in \mathbb{R}_+.$$

Definition 5.1. Discounting. Let

$$\vec{X}_t := (\vec{S}_t^{(0)}, \vec{S}_t^{(1)}, \ldots, \vec{S}_t^{(d)}), \quad t \in \mathbb{R},$$

denote the vector of discounted asset prices, defined as:
\[\tilde{S}_t^{(k)} = e^{-rt} S_t^{(k)}, \quad t \in \mathbb{R}, \quad k = 0, 1, \ldots, d. \]

We can also write
\[\mathcal{X}_t := e^{-rt} \tilde{S}_t, \quad t \in \mathbb{R}_+. \]

We refer to Figures 2.2 and 2.3 for illustrations of the concept of discounting.

My portfolio \(S_t \) grew by \(b = 5\% \) this year.

Q: Did I achieve a positive return?

A:

(a) Scenario A.

(b) Scenario B.

My portfolio \(S_t \) grew by \(b = 5\% \) this year.

The risk-free or inflation rate is \(r = 10\% \).

Q: Did I achieve a positive return?

A:

(a) Without inflation adjustment.

(b) With inflation adjustment.

Fig. 5.2: Why apply discounting?

Definition 5.2. A portfolio strategy is a stochastic process \((\xi_t)_{t \in \mathbb{R}_+} \subset \mathbb{R}^{d+1} \) where \(\xi_t^{(k)} \) denotes the (possibly fractional) quantity of asset \(n^k \) held at time \(t \in \mathbb{R}_+ \).

The value at time \(t \geq 0 \) of the portfolio strategy \((\xi_t)_{t \in \mathbb{R}_+} \subset \mathbb{R}^{d+1} \) is defined by
\[V_t := \xi_t \cdot S_t, \quad t \in \mathbb{R}_+. \]

The discounted value at time 0 of the portfolio is defined by
\[\tilde{V}_t := e^{-rt} V_t, \quad t \in \mathbb{R}_+. \]

For \(t \in \mathbb{R}_+ \), we have
\[\tilde{V}_t = e^{-rt} \xi_t \cdot S_t \]
\[= e^{-rt} \sum_{k=0}^{d} \xi_t^{(k)} S_t^{(k)} \]
Continuous-Time Market Model

\[d \tilde{X}_t = \xi_t \cdot S_t, \quad t \in \mathbb{R}_+. \]

The effect of discounting from time \(t \) to time 0 is to divide prices by \(e^{rt} \), making all prices comparable at time 0.

5.2 Arbitrage and Risk-Neutral Measures

In continuous-time, the definition of arbitrage follows the lines of its analogs in the one-step and discrete-time models. In the sequel we will only consider admissible portfolio strategies whose total value \(V_t \) remains nonnegative for all times \(t \in [0, T] \).

Definition 5.3. A portfolio strategy \(\left(\xi_t^{(k)} \right)_{t \in [0, T], k = 0, 1, \ldots, d} \) with value

\[V_t = \tilde{\xi}_t \cdot \tilde{S}_t = \sum_{k=0}^{d} \xi_t^{(k)} \tilde{S}_t^{(k)}, \quad t \in \mathbb{R}_+, \]

constitutes an arbitrage opportunity if all three following conditions are satisfied:

i) \(V_0 \leq 0 \) at time \(t = 0 \), [start from a zero-cost portfolio or in debt]

ii) \(V_T \geq 0 \) at time \(t = T \), [finish with a nonnegative amount]

iii) \(P(V_T > 0) > 0 \) at time \(t = T \). [profit made with nonzero probability]

Roughly speaking, \((ii) \) means that the investor wants no loss, \((iii) \) means that he wishes to sometimes make a strictly positive gain, and \((i) \) means that he starts with zero capital or even with a debt.

Next, we turn to the definition of risk-neutral probability measures (or martingale measures) in continuous time, which states that under a risk-neutral probability measure \(\mathbb{P}^* \), the return of the risky asset over the time interval \([u, t]\) equals the return of the riskless asset given by

\[S_t^{(0)} = e^{(t-u)r} S_u^{(0)}, \quad 0 \leq u \leq t. \]

Recall that the filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_+} \) is generated by Brownian motion \((B_t)_{t \in \mathbb{R}_+} \), i.e.

\[\mathcal{F}_t = \sigma(B_u : 0 \leq u \leq t), \quad t \in \mathbb{R}_+. \]

Definition 5.4. A probability measure \(\mathbb{P}^* \) on \(\Omega \) is called a risk-neutral measure if it satisfies

\[\mathbb{E}^* [S_t^{(k)} | \mathcal{F}_u] = e^{(t-u)r} S_u^{(k)}, \quad 0 \leq u \leq t, \quad k = 1, 2, \ldots, d. \quad (5.1) \]
where \mathbb{E}^* denotes the expectation under \mathbb{P}^*.

As in the discrete-time case, \mathbb{P}^\sharp would be called a risk premium measure if it satisfied

$$\mathbb{E}^\sharp [S_t^{(k)} \mid \mathcal{F}_u] > e^{(t-u)r} S_u^{(k)}, \quad 0 \leq u \leq t, \quad k = 1, 2, \ldots, d,$$

meaning that by taking risks in buying $S_t^{(i)}$, one could make an expected return higher than that of the riskless asset

$$S_t^{(0)} = e^{(t-u)r} S_u^{(0)}, \quad 0 \leq u \leq t.$$

Similarly, a negative risk premium measure \mathbb{P}^\flat satisfies

$$\mathbb{E}^\flat [S_t^{(k)} \mid \mathcal{F}_u] < e^{(t-u)r} S_u^{(k)}, \quad 0 \leq u \leq t, \quad k = 1, 2, \ldots, d.$$

From the relation

$$S_t^{(0)} = e^{(t-u)r} S_u^{(0)}, \quad 0 \leq u \leq t,$$

we interpret (5.1) by saying that the expected return of the risky asset $S_t^{(k)}$ under \mathbb{P}^* equals the return of the riskless asset $S_t^{(0)}$, $k = 1, 2, \ldots, d$. Recall that the discounted (in $ at time 0) price $\tilde{S}_t^{(k)}$ of the risky asset $n^o k$ is defined by

$$\tilde{S}_t^{(k)} := e^{-rt} S_t^{(k)} = \frac{S_t^{(k)}}{S_0^{(0)}}, \quad t \in \mathbb{R}_+, \quad k = 0, 1, \ldots, d,$$

i.e. $S_t^{(0)}/S_0^{(0)}$ plays the role of a numéraire in the sense of Chapter 15.

Definition 5.5. A continuous-time process $(Z_t)_{t \in \mathbb{R}_+}$ of integrable random variables is a martingale under \mathbb{P} and with respect to the filtration $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$ if

$$\mathbb{E}[Z_t \mid \mathcal{F}_s] = Z_s, \quad 0 \leq s \leq t.$$

Note that when $(Z_t)_{t \in \mathbb{R}_+}$ is a martingale, Z_t is in particular \mathcal{F}_t-measurable at all times $t \in \mathbb{R}_+$.

In continuous-time finance, the martingale property can be used to characterize risk-neutral probability measures, for the derivation of pricing partial differential equations (PDEs), and for the computation of conditional expectations.

As in the discrete-time case, the notion of martingale can be used to characterize risk-neutral probability measures as in the next proposition.
Proposition 5.6. The probability measure P^* is risk-neutral if and only if the discounted risky asset price process $(\tilde{S}_t^{(k)})_{t \in \mathbb{R}_+}$ is a martingale under P^*, $k = 1, 2, \ldots, d$.

Proof. If P^* is a risk-neutral probability measure, we have

$$E^*[\tilde{S}_t^{(i)} | F_u] = E^*[e^{-rt} S_t^{(i)} | F_u] = e^{-rt} E^*[S_t^{(i)} | F_u] = e^{-rt} e^{(t-u)r} S_u^{(i)} = e^{-ru} S_u^{(i)} = \tilde{S}_u^{(i)}, \quad 0 \leq u \leq t,$$

hence $(\tilde{S}_t^{(i)})_{t \in \mathbb{R}_+}$ is a martingale under P^*. Conversely, if $(\tilde{S}_t^{(i)})_{t \in \mathbb{R}_+}$ is a martingale under P^* then

$$E^*[S_t^{(i)} | F_u] = E^*[e^{rt} \tilde{S}_t^{(i)} | F_u] = e^{rt} E^*[\tilde{S}_t^{(i)} | F_u] = e^{rt} \tilde{S}_u^{(i)} = e^{(t-u)r} S_u^{(i)}, \quad 0 \leq u \leq t, \quad i = 1, 2, \ldots, d,$$

hence the probability measure P^* is risk-neutral according to Definition 5.4.

In the sequel we will only consider probability measures P^* that are equivalent to P in the sense that they have the same events of zero probability.

Definition 5.7. A probability measure P^* on (Ω, \mathcal{F}) is said to be equivalent to another probability measure P when

$$P^*(A) = 0 \quad \text{if and only if} \quad P(A) = 0, \quad \text{for all} \quad A \in \mathcal{F}. \quad (5.2)$$

Next, we note that the first fundamental theorem of asset pricing also holds in continuous time, and can be used to check for the existence of arbitrage opportunities.

Theorem 5.8. A market is without arbitrage opportunity if and only if it admits at least one equivalent risk-neutral probability measure P^*.

5.3 Self-Financing Portfolio Strategies

Let \(\xi_t^{(i)} \) denote the (possibly fractional) quantity invested at time \(t \) over the time interval \([t, t + dt]\), in the asset \(S_t^{(k)} \), \(k = 0, 1, \ldots, d \), and let

\[
\xi_t = (\xi_t^{(k)})_{k=0,1,\ldots,d}, \quad S_t = (S_t^{(k)})_{k=0,1,\ldots,d}, \quad t \in \mathbb{R}^+,
\]
denote the associated portfolio value and asset price processes. The portfolio value \(V_t \) at time \(t \) is given by

\[
V_t = \xi_t \cdot S_t = \sum_{k=0}^{d} \xi_t^{(k)} S_t^{(k)}, \quad t \in \mathbb{R}^+.
\]
(5.3)

Our description of portfolio strategies proceeds in four equivalent formulations (5.4), (5.5) (5.7) and (5.8), which correspond to different interpretations of the self-financing condition.

Self-financing portfolio update

The portfolio strategy \((\xi_t)_{t \in \mathbb{R}^+} \) is self-financing if the portfolio value remains constant after updating the portfolio from \(\xi_t \) to \(\xi_{t+dt} \), i.e.

\[
\xi_t \cdot S_{t+dt} = \sum_{k=0}^{d} \xi_t^{(k)} S_{t+dt}^{(k)} = \sum_{k=0}^{d} \xi_{t+dt}^{(k)} S_{t+dt}^{(k)} = \xi_{t+dt} \cdot S_{t+dt},
\]
(5.4)

which is the continuous-time analog of the self-financing condition already encountered in the discrete setting of Chapter 2, see Definition 2.3. A major difference with the discrete-time case of Definition 2.3, however, is that the continuous-time differentials \(dS_t \) and \(d\xi_t \) do not make pathwise sense as continuous-time stochastic integrals are defined by \(L^2 \) limits, cf. Proposition 4.16, or by convergence in probability.

Equivalently, Condition (5.4) can be rewritten as

Fig. 5.3: Illustration of the self-financing condition (5.4).

This version: January 15, 2020
https://www.ntu.edu.sg/home/nprivault/index.html
Continuous-Time Market Model

\[\sum_{k=0}^{d} S_{t+dt}^{(k)} d\xi_t^{(k)} = 0, \]

(5.5)

where

\[d\xi_t^{(k)} := \xi_t^{(k)} - \xi_t^{(k)}, \quad k = 0, 1, \ldots, d, \]

denote the respective changes in portfolio allocations. In other words, (5.5) rewrites as

\[\sum_{k=0}^{d} S_{t+dt}^{(k)} (\xi_t^{(k)} - \xi_t^{(k)}) = 0. \]

(5.6)

Condition (5.6) can be rewritten as

\[
S_t^{(k)} (\xi_{t+dt}^{(k)} - \xi_t^{(k)}) + \sum_{k=0}^{d} S_{t+dt}^{(k)} - S_t^{(k)} (\xi_{t+dt}^{(k)} - \xi_t^{(k)}) = 0,
\]

which shows that (5.4) and (5.5) are equivalent to

\[
\bar{S}_t d\bar{\xi}_t + d\bar{S}_t \cdot d\bar{\xi}_t = \sum_{k=0}^{d} S_t^{(k)} d\xi_t^{(k)} + \sum_{k=0}^{d} dS_t^{(k)} \cdot d\xi_t^{(k)} = 0
\]

(5.7)

in differential notation.

Portfolio differential

In practice, the self-financing portfolio property will be characterized by the following proposition.

Proposition 5.9. A portfolio strategy \((\xi_t^{(k)})_{t \in [0,T], k = 0, 1, \ldots, d}\) with value

\[V_t = \bar{\xi}_t \cdot \bar{S}_t = \sum_{k=0}^{d} \xi_t^{(k)} S_t^{(k)}, \quad t \in \mathbb{R}_+, \]

is self-financing according to (5.4) if and only if the relation

\[dV_t = \sum_{k=0}^{d} \xi_t^{(k)} dS_t^{(k)} \text{ for asset } n^o_i \]

holds.

Proof. By Itô’s calculus we have
\[
dV_t = \sum_{k=0}^{d} \xi^{(k)}_t dS^{(k)}_t + \sum_{k=0}^{d} S^{(k)}_t d\xi^{(k)}_t + \sum_{k=0}^{d} dS^{(k)}_t \cdot d\xi^{(k)}_t,
\]
which shows that (5.7) is equivalent to (5.8).

\section*{Market Completeness}

\begin{definition}
A contingent claim with payoff \(C \) is said to be attainable if there exists a (self-financing) portfolio strategy \((\xi^{(k)}_t)_{t \in [0,T], k=0,1,\ldots,d} \) such that at the maturity time \(T \) the equality
\[
V_T = \xi_T \cdot S_T = \sum_{k=0}^{d} \xi^{(k)}_T S^{(k)}_T = C
\]
holds (almost surely) between random variables.
\end{definition}

When a claim with payoff \(C \) is attainable, its price at time \(t \) will be given by the value \(V_t \) of a self-financing portfolio hedging \(C \).

\begin{definition}
A market model is said to be complete if every contingent claim payoff \(C \) is attainable.
\end{definition}

The next result is the continuous-time statement of the second fundamental theorem of asset pricing.

\begin{theorem}
A market model without arbitrage opportunities is complete if and only if it admits only one equivalent risk-neutral probability measure \(\mathbb{P}^* \).
\end{theorem}

\begin{proof}
\end{proof}

In the Black and Scholes (1973) model, one can show the existence of a unique risk-neutral probability measure, hence the model is without arbitrage and complete.

\section*{5.4 Black-Scholes Market Model}

From now one we work with \(d = 1 \), i.e. with a market based on a riskless asset with price \((A_t)_{t \in \mathbb{R}^+_+} \) and a risky asset with price \((S_t)_{t \in \mathbb{R}^+_+} \).

The riskless asset price process \((A_t)_{t \in \mathbb{R}^+_+} \) admits the following equivalent constructions:
\[
\frac{A_{t+dt} - A_t}{A_t} = rdt,
\frac{dA_t}{A_t} = rdt,
A'_t = rA_t,
\]
\(t \in \mathbb{R}^+_+ \).

\[182\]
with the solution
\[A_t = A_0 e^{rt}, \quad t \in \mathbb{R}_+, \quad (5.9) \]
where \(r > 0 \) is the risk-free interest rate.*

Self-Financing Portfolio Strategies

Let \(\xi_t \) and \(\eta_t \) denote the (possibly fractional) quantities invested at time \(t \) over the time interval \([t, t + dt)\), respectively in the assets \(S_t \) and \(A_t \), and let
\[\bar{\xi}_t = (\eta_t, \xi_t), \quad \bar{S}_t = (A_t, S_t), \quad t \in \mathbb{R}_+, \]
denote the associated portfolio value and asset price processes. The portfolio value \(V_t \) at time \(t \) is given by
\[V_t = \bar{\xi}_t \cdot \bar{S}_t = \eta_t A_t + \xi_t S_t, \quad t \in \mathbb{R}_+. \]

Our description of portfolio strategies proceeds in four equivalent formulations presented below in Equations (5.10), (5.11), (5.13) and (5.14), which correspond to different interpretations of the self-financing condition.

Self-financing portfolio update

The portfolio strategy \((\eta_t, \xi_t)_{t \in \mathbb{R}_+}\) is self-financing if the portfolio value remains constant after updating the portfolio from \((\eta_t, \xi_t)\) to \((\eta_{t+dt}, \xi_{t+dt})\), i.e.
\[\bar{\xi}_t \cdot \bar{S}_{t+dt} = \eta_t A_{t+dt} + \xi_t S_{t+dt} = \eta_{t+dt} A_{t+dt} + \xi_{t+dt} S_{t+dt} = \bar{\xi}_{t+dt} \cdot \bar{S}_{t+dt}. \quad (5.10) \]

[Fig. 5.4: Illustration of the self-financing condition (5.10).]

Equivalently, Condition (5.10) can be rewritten as
\[A_{t+dt} d\eta_t + S_{t+dt} d\xi_t = 0, \quad (5.11) \]

*“Anyone who believes exponential growth can go on forever in a finite world is either a madman or an economist”, Kenneth E. Boulding, Boulding (1973), page 248.
where \(d\eta_t := \eta_{t+dt} - \eta_t \) and \(d\xi_t := \xi_{t+dt} - \xi_t \) denote the respective changes in portfolio allocations. In other words, we have

\[
A_{t+dt}(\eta_t - \eta_{t+dt}) = S_{t+dt}(\xi_{t+dt} - \xi_t).
\]

(5.12)

In other words, when one sells a (possibly fractional) quantity \(\eta_t - \eta_{t+dt} > 0 \) of the riskless asset valued \(A_{t+dt} \) at the end of the time interval \([t, t+dt]\) for the total amount \(A_{t+dt}(\eta_t - \eta_{t+dt}) \), one should entirely spend this income to buy the corresponding quantity \(\xi_{t+dt} - \xi_t > 0 \) of the risky asset for the same amount \(S_{t+dt}(\xi_{t+dt} - \xi_t) > 0 \).

Similarly, if one sells a quantity \(-d\xi_t > 0\) of the risky asset \(S_{t+dt} \) between the time intervals \([t, t+dt]\) and \([t+dt, t+2dt]\) for a total amount \(-S_{t+dt}d\xi_t\), one should entirely use this income to buy a quantity \(d\eta_t > 0 \) of the riskless asset for an amount \(A_{t+dt}d\eta_t > 0 \), i.e.

\[
A_{t+dt}d\eta_t = -S_{t+dt}d\xi_t.
\]

Condition (5.12) can be rewritten as

\[
S_t(\xi_{t+dt} - \xi_t) + A_t(\eta_{t+dt} - \eta_t) + (S_{t+dt} - S_t)(\xi_{t+dt} - \xi_t) + (A_{t+dt} - A_t)(\eta_{t+dt} - \eta_t) = 0,
\]

which shows that (5.10) and (5.11) are equivalent to

\[
S_t d\xi_t + A_t d\eta_t + dS_t \cdot d\xi_t + dA_t \cdot d\eta_t = 0
\]

(5.13)

in differential notation, with

\[
dA_t \cdot d\eta_t \simeq (A_{t+dt} - A_t) \cdot (\eta_{t+dt} - \eta_t) = r A_t (dt \cdot d\eta_t) = 0
\]

in the sense of the Itô calculus by the Itô Table 4.1. The following proposition is consequence of Proposition 5.9.

Proposition 5.13. A portfolio allocation \((\xi_t, \eta_t)_{t \in \mathbb{R}^+}\) with value

\[
V_t = \eta_t A_t + \xi_t S_t,
\]

is self-financing according to (5.10) if and only if the relation

\[
dV_t = \underbrace{\eta_t dA_t}_{\text{risk-free } P/L} + \underbrace{\xi_t dS_t}_{\text{risky } P/L}
\]

(5.14)

holds.

Proof. By Itô’s calculus we have
Continuous-Time Market Model

\[dV_t = [\eta_t dA_t + \xi_t dS_t] + [S_t d\xi_t + A_t d\eta_t + dS_t \cdot d\xi_t + dA_t \cdot d\eta_t], \]

which shows that (5.13) is equivalent to (5.14). \qed

Let

\[\tilde{V}_t := e^{-rt}V_t \quad \text{and} \quad \tilde{S}_t := e^{-rt}S_t, \quad t \in \mathbb{R}_+, \]

respectively denote the discounted portfolio value and discounted risky asset price at time \(t \geq 0 \).

Geometric Brownian motion

The risky asset price process \((S_t)_{t \in \mathbb{R}_+} \) will be modeled using a geometric Brownian motion defined from the equation

\[\frac{dS_t}{S_t} = \mu dt + \sigma dB_t, \quad t \in \mathbb{R}_+, \tag{5.15} \]

see Section 5.5.

```r
N=2000; t <- 0:N; dt <- 1.0/N; mu=0.5; sigma=0.2; nsim <- 10
X <- matrix(rnorm(nsim*N,mean=0,sd=sqrt(dt)), nsim, N)
X <- cbind(rep(0, nsim), t(apply(X, 1, cumsum)))
for (i in 1:nsim){X[i,] <- exp(mu*t*dt+sigma*X[i,]-sigma*sigma*t*dt/2)}
plot(t*dt, rep(0, N+1), xlab = "time", ylab = "Geometric Brownian motion", lwd=2, ylim = c(min(X),max(X)), type = "l", col = 0)
for (i in 1:nsim){lines(t*dt, X[i,], lwd=2, type = "l", col = i)}
```

By Proposition 5.16 below, we have

\[S_t = S_0 \exp \left(\sigma B_t + \left(\mu - \frac{1}{2} \sigma^2 \right) t \right), \quad t \in \mathbb{R}_+. \]

The next Figure 5.5 presents sample paths of geometric Brownian motion.
Lemma 5.14. Discounting lemma. Consider an asset price process \((S_t)_{t \in \mathbb{R}^+}\) be as in (5.15), i.e.
\[
 dS_t = \mu S_t dt + \sigma S_t dB_t, \quad t \in \mathbb{R}^+.
\]
Then the discounted asset price process \((\tilde{S}_t)_{t \in \mathbb{R}^+}\) satisfies the equation
\[
 d\tilde{S}_t = (\mu - r)\tilde{S}_t dt + \sigma \tilde{S}_t dB_t.
\]

Proof. We have
\[
 d\tilde{S}_t = d(e^{-rt}S_t) \\
 = S_t d(e^{-rt}) + e^{-rt} dS_t + (de^{-rt}) \cdot dS_t \\
 = -re^{-rt}S_t dt + e^{-rt} dS_t + (-r e^{-rt} S_t dt) \cdot dS_t \\
 = -re^{-rt}S_t dt + \mu e^{-rt} S_t dt + \sigma e^{-rt} S_t dB_t \\
 = (\mu - r)\tilde{S}_t dt + \sigma \tilde{S}_t dB_t.
\]

In the next Lemma 5.15, which is the continuous-time analog of Lemma 3.2, we show that when a portfolio is self-financing, its discounted value is a gain process given by the sum over time of discounted trading profits and losses (number of risky assets \(\xi_t\) times discounted price variation \(d\tilde{S}_t\)).

Note that in Equation (5.16) below, no profit or loss arises from trading the discounted riskless asset \(\tilde{A}_t := e^{-rt}A_t = A_0\), because its value is constant over time.

Lemma 5.15. Let \((\eta_t, \xi_t)_{t \in \mathbb{R}^+}\) be a portfolio strategy with value
Continuous-Time Market Model

\[V_t = \eta_t A_t + \xi_t S_t, \quad t \in \mathbb{R}_+. \]

The following statements are equivalent:

(i) the portfolio strategy \((\eta_t, \xi_t)_{t \in \mathbb{R}_+}\) is self-financing,

(ii) the discounted portfolio value \(\tilde{V}_t\) can be written as the stochastic integral sum

\[
\tilde{V}_t = \tilde{V}_0 + \int_0^t \xi_u d\tilde{S}_u, \quad t \in \mathbb{R}_+, \tag{5.16}
\]

of discounted profits and losses.

Proof. Assuming that (i) holds, the self-financing condition and (5.9)-(5.15) show that

\[
dV_t = \eta_t dA_t + \xi_t dS_t
\]

\[
= r \eta_t A_t dt + \mu \xi_t S_t dt + \sigma \xi_t S_t dB_t
\]

\[
= rV_t dt + (\mu - r) \xi_t S_t dt + \sigma \xi_t S_t dB_t, \quad t \in \mathbb{R}_+,
\]

hence

\[
e^{-rt} dV_t = r e^{-rt} V_t dt + (\mu - r) e^{-rt} \xi_t S_t dt + \sigma e^{-rt} \xi_t S_t dB_t, \quad t \in \mathbb{R}_+,
\]

and

\[
d\tilde{V}_t = d(e^{-rt} V_t)
\]

\[
= -r e^{-rt} V_t dt + e^{-rt} dV_t
\]

\[
= (\mu - r) \xi_t e^{-rt} S_t dt + \sigma \xi_t e^{-rt} S_t dB_t
\]

\[
= (\mu - r) \xi_t \tilde{S}_t dt + \sigma \xi_t \tilde{S}_t dB_t
\]

\[
= \xi_t d\tilde{S}_t, \quad t \in \mathbb{R}_+,
\]

i.e. (5.16) holds by integrating on both sides as

\[
\tilde{V}_t - \tilde{V}_0 = \int_0^t d\tilde{V}_u = \int_0^t \xi_u d\tilde{S}_u, \quad t \in \mathbb{R}_+.
\]

(ii) Conversely, if (5.16) is satisfied we have

\[
dV_t = d(e^{rt} \tilde{V}_t)
\]

\[
= r e^{rt} \tilde{V}_t dt + e^{rt} d\tilde{V}_t
\]

\[
= r e^{rt} \tilde{V}_t dt + e^{rt} \xi_t d\tilde{S}_t
\]

\[
= rV_t dt + e^{rt} \xi_t d\tilde{S}_t
\]

\[
= rV_t dt + e^{rt} \xi_t \tilde{S}_t ((\mu - r) dt + \sigma dB_t)
\]
\[
= rV_t dt + \xi_t S_t ((\mu - r) dt + \sigma dB_t)
\]
\[
= r\eta A_t dt + \mu \xi_t S_t dt + \sigma \xi_t S_t dB_t
\]
\[
= \eta_t dA_t + \xi_t dS_t,
\]
hence the portfolio is self-financing according to Definition 5.9. \(\square\)

As a consequence of Relation (5.16), the problem of hedging a claim payoff \(C\) with maturity \(T\) also reduces to that of finding the process \((\xi_t)_{t \in [0, T]}\) appearing in the decomposition of the discounted claim payoff \(\tilde{C} = e^{-rT}C\) as a stochastic integral:

\[
\tilde{C} = \tilde{V}_T = \tilde{V}_0 + \int_0^T \xi_t d\tilde{S}_t,
\]
see Section 7.5 on hedging by the martingale method.

Example. Power options in the Bachelier model.

In the Bachelier model, the underlying asset price can be modeled by Brownian motion \((B_t)_{t \in \mathbb{R}_+}\). The claim payoff \(C = (B_T)^2\) of a power option with at maturity \(T > 0\) admits the stochastic integral decomposition

\[
(B_T)^2 = T + 2 \int_0^T B_t dB_t
\]
which shows that the claim can be hedged using \(\xi_t = 2B_t\) units of the underlying asset at time \(t \in [0, T]\).

Similarly, in the case of power claim payoff \(C = (B_T)^3\) we have

\[
(B_T)^3 = 3 \int_0^T (T - t + (B_t)^2) dB_t,
\]

cf. Exercise 4.5.

Note that according to (5.16), the (non-discounted) self-financing portfolio value \(V_t\) can be written as

\[
V_t = e^{rt}V_0 + (\mu - r) \int_0^t e^{(t-u)r} \xi_u S_u du + \sigma \int_0^t e^{(t-u)r} \xi_u S_u dB_u, \quad t \in \mathbb{R}_+.
\]

(5.17)

5.5 Geometric Brownian Motion

In this section we solve the stochastic differential equation

\[
dS_t = \mu S_t dt + \sigma S_t dB_t
\]
which is used to model the S_t the risky asset price at time t, where $\mu \in \mathbb{R}$ and $\sigma > 0$. This equation is rewritten in integral form as

$$S_t = S_0 + \mu \int_0^t S_u du + \sigma \int_0^t S_u dB_u, \quad t \in \mathbb{R}_+. \quad (5.18)$$

It can be solved by applying Itô’s formula to the Itô process $(S_t)_{t \in \mathbb{R}_+}$ as in (4.21) with $v_t = \mu S_t$ and $u_t = \sigma S_t$, and by taking $f(S_t) = \log S_t$ with $f(x) = \log x$, from which we derive the log-return dynamics

$$d \log S_t = \mu S_t f'(S_t) dt + \sigma S_t f'(S_t) dB_t + \frac{1}{2} \sigma^2 S_t^2 f''(S_t) dt$$

$$= \mu dt + \sigma dB_t - \frac{1}{2} \sigma^2 dt,$$

hence

$$\log S_t - \log S_0 = \int_0^t d \log S_r$$

$$= \left(\mu - \frac{1}{2} \sigma^2 \right) \int_0^t ds + \sigma \int_0^t dB_s$$

$$= \left(\mu - \frac{1}{2} \sigma^2 \right) t + \sigma B_t, \quad t \in \mathbb{R}_+, \quad \text{and} \quad S_t = S_0 \exp \left(\left(\mu - \frac{1}{2} \sigma^2 \right) t + \sigma B_t \right), \quad t \in \mathbb{R}_+. \quad \text{The above calculation provides a proof for the next proposition.}$$

Proposition 5.16. The solution of the stochastic differential equation

$$dS_t = \mu S_t dt + \sigma S_t dB_t \quad (5.19)$$

is given by

$$S_t = S_0 \exp \left(\sigma B_t + \left(\mu - \frac{1}{2} \sigma^2 \right) t \right), \quad t \in \mathbb{R}_+. \quad \text{Proof. Let us provide an alternative proof by searching for a solution of the form}$$

$$S_t = f(t, B_t)$$

where $f(t, x)$ is a function to be determined. By Itô’s formula (4.24) we have

$$dS_t = df(t, B_t) = \frac{\partial f}{\partial t} (t, B_t) dt + \frac{\partial f}{\partial x} (t, B_t) dB_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (t, B_t) dt.$$
\[
\begin{aligned}
\frac{\partial f}{\partial x}(t, B_t) &= \sigma S_t, \\
\frac{\partial f}{\partial t}(t, B_t) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(t, B_t) &= \mu S_t.
\end{aligned}
\]

Using the relation \(S_t = f(t, B_t) \), these two equations rewrite as
\[
\begin{aligned}
\frac{\partial f}{\partial x}(t, B_t) &= \sigma f(t, B_t), \\
\frac{\partial f}{\partial t}(t, B_t) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(t, B_t) &= \mu f(t, B_t).
\end{aligned}
\]

Since \(B_t \) is a Gaussian random variable taking all possible values in \(\mathbb{R} \), the equations should hold for all \(x \in \mathbb{R} \), as follows:
\[
\begin{aligned}
\frac{\partial f}{\partial x}(t, x) &= \sigma f(t, x), \\
\frac{\partial f}{\partial t}(t, x) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(t, x) &= \mu f(t, x).
\end{aligned}
\] (5.22a) (5.22b)

To find the solution \(f(t, x) = f(t, 0) e^{\sigma x} \) of (5.22a) we let \(g(t, x) = \log f(t, x) \) and rewrite (5.22a) as
\[
\frac{\partial g}{\partial x}(t, x) = \frac{\partial \log f}{\partial x}(t, x) = \frac{1}{f(t, x)} \frac{\partial f}{\partial x}(t, x) = \sigma,
\]
i.e.
\[
\frac{\partial g}{\partial x}(t, x) = \sigma,
\]
which is solved as
\(g(t, x) = g(t, 0) + \sigma x \),

hence
\[
f(t, x) = e^{g(t, 0)} e^{\sigma x} = f(t, 0) e^{\sigma x}.
\]

Plugging back this expression into the second equation (5.22b) yields
\[
e^{\sigma x} \frac{\partial f}{\partial t}(t, 0) + \frac{1}{2} \sigma^2 e^{\sigma x} f(t, 0) = \mu f(t, 0) e^{\sigma x},
\]
i.e.
\[
\frac{\partial f}{\partial t}(t, 0) = \left(\mu - \frac{\sigma^2}{2} \right) f(t, 0).
\]
In other words, we have \(\frac{\partial g}{\partial t}(t, 0) = \mu - \sigma^2/2 \), which yields

\[
g(t, 0) = g(0, 0) + \left(\mu - \frac{\sigma^2}{2} \right) t,
\]

i.e.

\[
f(t, x) = e^{g(t, x)} = e^{g(t, 0) + \sigma x}
= e^{g(0, 0) + \sigma x + (\mu - \sigma^2/2) t}
= f(0, 0) e^{\sigma x + (\mu - \sigma^2/2) t}, \quad t \in \mathbb{R}_+.
\]

We conclude that

\[
S_t = f(t, B_t) = f(0, 0) e^{\sigma B_t + (\mu - \sigma^2/2) t},
\]

and the solution to (5.19) is given by

\[
S_t = S_0 e^{\sigma B_t + (\mu - \sigma^2/2) t}, \quad t \in \mathbb{R}_+.
\]

The next Figure 5.6 presents an illustration of the geometric Brownian process of Proposition 5.16.

Fig. 5.6: Geometric Brownian motion started at \(S_0 = 1 \), with \(\mu = r = 1 \) and \(\sigma^2 = 0.5 \).∗

∗ The animation works in Acrobat Reader on the entire pdf file.
Conversely, taking $S_t = f(t, B_t)$ with $f(t, x) = S_0 e^{\sigma x - \sigma^2 t/2 + \mu t}$ we may apply Itô’s formula to check that

$$dS_t = df(t, B_t) = \frac{\partial f}{\partial t} (t, B_t) dt + \frac{\partial f}{\partial x} (t, B_t) dB_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (t, B_t) dt$$

$$= (\mu - \sigma^2/2) S_0 e^{\sigma B_t + (\mu - \sigma^2/2) t} dt + \sigma S_0 e^{\sigma B_t + (\mu - \sigma^2/2) t} dB_t$$

$$+ \frac{1}{2} \sigma^2 S_0 e^{\sigma B_t + (\mu - \sigma^2/2) t} dt$$

$$= \mu S_0 e^{\sigma B_t + (\mu - \sigma^2/2) t} dt + \sigma S_0 e^{\sigma B_t + (\mu - \sigma^2/2) t} dB_t$$

$$= \mu S_t dt + \sigma S_t dB_t.$$

Exercises

Exercise 5.1 Show that at any time $T > 0$, the random variable $S_T := S_0 e^{\sigma B_T + (\mu - \sigma^2/2) T}$ has the lognormal distribution with probability density function

$$f(x) = \frac{1}{x \sigma \sqrt{2\pi T}} e^{-(\mu - \sigma^2/2) T + \log(x/S_0)^2/(2\sigma^2 T)}, \quad x > 0,$$

and log-variance σ^2.

Exercise 5.2 Consider the price process $(S_t)_{t \in \mathbb{R}_+}$ given by the stochastic differential equation

$$dS_t = r S_t dt + \sigma S_t dB_t.$$

Find the stochastic integral decomposition of the random variable S_T, i.e., find the constant $C(S_0, r, T) \in \mathbb{R}$ and the process $(\zeta_t, T)_{t \in [0, T]}$ such that

$$S_T = C(S_0, r, T) + \int_0^T \zeta_{t, T} dB_t. \quad (5.23)$$

Exercise 5.3 Consider $(B_t)_{t \in \mathbb{R}_+}$ a standard Brownian motion generating the filtration $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$ and the process $(S_t)_{t \in \mathbb{R}_+}$ defined by

This version: January 15, 2020

https://www.ntu.edu.sg/home/nprivault/indext.html
Continuous-Time Market Model

\[S_t = S_0 \exp \left(\int_0^t \sigma_s dB_s + \int_0^t u_s ds \right), \quad t \in \mathbb{R}_+, \]

where \((\sigma_t)_{t \in \mathbb{R}_+}\) and \((u_t)_{t \in \mathbb{R}_+}\) are \((\mathcal{F}_t)_{t \in [0,T]}\)-adapted processes.

a) Compute \(dS_t\) using Itô calculus.

b) Show that \(S_t\) satisfies a stochastic differential equation to be determined.

Exercise 5.4 Consider \((B_t)_{t \in \mathbb{R}_+}\) a standard Brownian motion generating the filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\), and let \(\sigma > 0\).

a) Compute the mean and variance of the random variable \(S_t\) defined as

\[S_t := 1 + \sigma \int_0^t e^{\sigma B_s - \sigma^2 s/2} dB_s, \quad t \in \mathbb{R}_+. \]

b) Express \(d \log (S_t)\) using the Itô formula.

c) Show that \(S_t = e^{\sigma B_t - \sigma^2 t/2}\) for \(t \in \mathbb{R}_+\).

Exercise 5.5

a) Solve the ordinary differential equation \(df(t) = cf(t) dt\) and the stochastic differential equation \(dS_t = rS_t dt + \sigma S_t dB_t,\ t \in \mathbb{R}_+,\) where \(r, \sigma \in \mathbb{R}\) are constants and \((B_t)_{t \in \mathbb{R}_+}\) is a standard Brownian motion.

b) Show that

\[\mathbb{E}[S_t] = S_0 e^{rt} \quad \text{and} \quad \text{Var}[S_t] = S_0^2 e^{2rt} (e^{\sigma^2 t} - 1), \quad t \in \mathbb{R}_+. \]

c) Compute \(d \log S_t\) using the Itô formula.

d) Assume that \((W_t)_{t \in \mathbb{R}_+}\) is another standard Brownian motion, correlated to \((B_t)_{t \in \mathbb{R}_+}\) according to the Itô rule \(dW_t \cdot dB_t = \rho dt,\) for \(\rho \in [-1, 2],\) and consider the solution \((Y_t)_{t \in \mathbb{R}_+}\) of the stochastic differential equation

\[dY_t = \mu Y_t dt + \eta Y_t dW_t, \quad t \in \mathbb{R}_+, \]

where \(\mu, \eta \in \mathbb{R}\) are constants. Compute \(f(S_t, Y_t),\) for \(f\) a \(C^2\) function of \(\mathbb{R}^2.\)

Exercise 5.6 We consider a leveraged fund with factor \(\beta : 1\) on an index \((S_t)_{t \in \mathbb{R}_+}\) modeled as the geometric Brownian motion

\[dS_t = rS_t dt + \sigma S_t dB_t, \quad t \in \mathbb{R}_+, \]

under the risk-neutral probability measure \(\mathbb{P}^*.\)

a) Find the portfolio allocation \((\xi_t, \eta_t)\) of the leveraged fund value

\[F_t = \xi_t S_t + \eta_t A_t, \quad t \in \mathbb{R}_+, \]

where \(A_t := A_0 e^{rt}\) is the risk-free money market account.
b) Find the stochastic differential equation satisfied by \((F_t)_{t \in \mathbb{R}_+}\) under the self-financing condition \(dF_t = \xi_t dS_t + \eta_t dA_t\).

c) Find the relation between the fund value \(F_t\) and the index \(S_t\) by solving the stochastic differential equation obtained for \(F_t\) in Question (b). For simplicity we take \(F_0 := S_0^\alpha\).

Exercise 5.7 Solve the stochastic differential equation

\[
dX_t = h(t)X_t dt + \sigma X_t dB_t,
\]

where \(\sigma > 0\) and \(h(t)\) is a deterministic, integrable function of \(t \in \mathbb{R}_+\).

Hint: Look for a solution of the form \(X_t = f(t) e^{\sigma B_t - \sigma^2 t/2}\), where \(f(t)\) is a function to be determined, \(t \in \mathbb{R}_+\).

Exercise 5.8 Let \((B_t)_{t \in \mathbb{R}_+}\) denote a standard Brownian motion generating the filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\).

a) Consider the Itô formula

\[
f(X_t) = f(X_0) + \int_0^t u_s \frac{\partial f}{\partial x}(X_s) dB_s + \int_0^t v_s \frac{\partial f}{\partial x}(X_s) ds + \frac{1}{2} \int_0^t u_s^2 \frac{\partial^2 f}{\partial x^2}(X_s) ds,
\]

(5.24)

where \(X_t = X_0 + \int_0^t u_s dB_s + \int_0^t v_s ds\).

Compute \(S_t := e^{X_t}\) by the Itô formula (5.24) applied to \(f(x) = e^x\) and \(X_t = \sigma B_t + \nu t\), \(\sigma > 0\), \(\nu \in \mathbb{R}\).

b) Let \(r > 0\). For which value of \(\nu\) does \((S_t)_{t \in \mathbb{R}_+}\) satisfy the stochastic differential equation

\[
dS_t = rS_t dt + \sigma S_t dB_t?
\]

c) Given \(\sigma > 0\), let \(X_t := (B_T - B_t)\sigma\), and compute \(\text{Var}[X_t], t \in [0, T]\).

d) Let the process \((S_t)_{t \in \mathbb{R}_+}\) be defined by \(S_t = S_0 e^{\sigma B_t + \nu t}, t \in \mathbb{R}_+\). Using the result of Exercise A.2, show that the conditional probability that \(S_T > K\) given \(S_t = x\) can be computed as

\[
\mathbb{P}(S_T > K \mid S_t = x) = \Phi\left(\frac{\log(x/K) + (T-t)\nu}{\sigma \sqrt{T-t}}\right), \quad t \in [0, T).
\]

Hint: Use the time splitting decomposition

\[
S_T = S_t \frac{S_T}{S_t} = S_t e^{(B_T - B_t)\sigma + (T-t)\nu}, \quad t \in [0, T].
\]
Problem 5.9 Stop-loss start-gain strategy (Lipton (2001) § 8.3.3., Exercise 4.14 continued). Let \((B_t)_{t \in \mathbb{R}_+}\) be a standard Brownian motion started at \(B_0 \in \mathbb{R}\).

a) We consider a simplified foreign exchange model in which the AUD is a risky asset and the AUD/SGD exchange rate at time \(t\) is modeled by \(B_t\), i.e. AU$1 equals SG$\(B_t\) at time \(t\). A foreign exchange (FX) European call option gives to its holder the right (but not the obligation) to receive AU$1 in exchange for \(K = \text{SG}1\) at maturity \(T\). Give the option payoff at maturity, quoted in SGD.

In the sequel, for simplicity we assume no time value of money \((r = 0)\), i.e. the (riskless) SGD account is priced \(A_t = A_0 = 1\), \(t \in [0, T]\).

b) Consider the following hedging strategy for the European call option of Question (a):
 i) If \(B_0 > 1\), charge the premium \(B_0 - 1\) at time 0, borrow SG$1 and purchase AU$1.
 ii) If \(B_0 < 1\), issue the option for free.
 iii) From time 0 to time \(T\), purchase* AU$1 every time \(B_t\) crosses \(K = 1\) from below, and sell† AU$1 each time \(B_t\) crosses \(K = 1\) from above.

Show that this strategy effectively hedges the foreign exchange European call option at maturity \(T\).

* Hint. Note that it suffices to consider four scenarios based on \(B_0 < 1\) vs \(B_0 < 1\) and \(B_T > 1\) vs \(B_T < 1\).

b) Determine the quantities \(\eta_t\) of SGD cash and \(\xi_t\) of (risky) AUDs to be held in the portfolio and express the portfolio value

\[V_t = \eta_t + \xi_t B_t \]

at all times \(t \in [0, T]\).

d) Compute the integral summation

\[\int_0^t \eta_s dA_s + \int_0^t \xi_s dB_s \]

of portfolio profits and losses at any time \(t \in [0, T]\).

* Hint. Apply the result of Question (e).

e) Is the portfolio strategy \((\eta_t, \xi_t)_{t \in [0, T]}\) self-financing? How to interpret the answer in practice?

* We need to borrow SG$1 if this is the first AUD purchase.
† We use the SG$1 product of the sale to refund the loan.