Traceability of the Jump

Keng Meng, Ng
Victoria University of Wellington
Motivation

From algorithmic randomness.

- Approaches that tries to capture the intuitive meaning of “complexity” and “randomness”.

- In particular, the remarkable class of the K-trivials. (Compressibility)

- Relationship with the classical computability notions, such as degrees?

- Questions from relativization; Completions of pseudojump operators.
Motivation

- From algorithmic randomness.
 - Approaches that tries to capture the intuitive meaning of “complexity” and “randomness”.
 - In particular, the remarkable class of the K-trivials. (Compressibility)
 - Relationship with the classical computability notions, such as degrees?
 - Questions from relativization; Completions of pseudojump operators.
Motivation

- From algorithmic randomness.
 - Approaches that tries to capture the intuitive meaning of “complexity” and “randomness”.
 - In particular, the remarkable class of the K-trivals. (Compressibility)
 - Relationship with the classical computability notions, such as degrees?
- Questions from relativization;
 Completions of pseudojump operators.
Motivation

- From algorithmic randomness.
 - Approaches that tries to capture the intuitive meaning of “complexity” and “randomness”.
 - In particular, the remarkable class of the K-trivials. (Compressibility)
 - Relationship with the classical computability notions, such as degrees?

- Questions from relativization; Completions of pseudojump operators.
Some Concepts (I)

- A Turing Machine is a fixed set of instructions.
- An oracle TM has an extra read only tape.
- $A \subseteq \mathbb{N}$ is recursive (or computable) in $B \subseteq \mathbb{N}$. We write $A \leq_T B$.
- A is recursively enumerable (r.e.) in B.
- Write W^X_φ as the e^{th} set, recursively enumerable in X.
Some Concepts (I)

- A Turing Machine is a fixed set of instructions.

- An oracle TM has an extra read only tape.

- $A \subseteq \mathbb{N}$ is recursive (or computable) in $B \subseteq \mathbb{N}$. We write $A \leq_T B$.

- A is recursively enumerable (r.e.) in B.

- Write W_e^X as the e^{th} set, recursively enumerable in X.
Some Concepts (I)

- A Turing Machine is a fixed set of instructions.

- An oracle TM has an extra read only tape.

- \(A \subseteq \mathbb{N} \) is recursive (or computable) in \(B \subseteq \mathbb{N} \). We write \(A \leq_T B \).

- \(A \) is recursively enumerable (r.e.) in \(B \).

- Write \(W^X_\epsilon \) as the \(\epsilon \text{th} \) set, recursively enumerable in \(X \).
Some Concepts (I)

- A Turing Machine is a fixed set of instructions.

- An oracle TM has an extra read only tape.

- $A \subseteq \mathbb{N}$ is recursive (or computable) in $B \subseteq \mathbb{N}$. We write $A \leq_T B$.

- A is recursively enumerable (r.e.) in B.

- Write W^X_θ as the e^{th} set, recursively enumerable in X.

Keng Meng, Ng Victoria University of Wellington

Traceability of the Jump
Some Concepts (II)

- Halting problem $\emptyset' = \{ e : e^{th} \text{ program halts} \}$.

- Similarly, relativization of above to define A' for any set A.

- (Shoenfield Limit Lemma) $A \leq_T \emptyset'$ iff $A \in \Delta^0_2$.

- A is low if $A' \equiv_T \emptyset'$.
 (In some sense, low computational power).

- A is high if $A' \equiv_T \emptyset''$.
Some Concepts (II)

- Halting problem $\emptyset' = \{ e : e^{th} \text{ program halts} \}$.

- Similarly, relativization of above to define A' for any set A.

- (Shoenfield Limit Lemma) $A \leq_T \emptyset'$ iff $A \in \Delta_2^0$.

- A is low if $A' \equiv_T \emptyset'$.
 (In some sense, low computational power).

- A is high if $A' \equiv_T \emptyset''$.
SOME CONCEPTS (II)

- Halting problem $\emptyset' = \{ e : e^{th} \text{ program halts} \}$.

- Similarly, relativization of above to define A' for any set A.

- (Shoenfield Limit Lemma) $A \leq_T \emptyset'$ iff $A \in \Delta^0_2$.

- A is low if $A' \equiv_T \emptyset'$.
 (In some sense, low computational power).

- A is high if $A' \equiv_T \emptyset''$.
Stronger Forms Of Reducibilities (I)

- Truth-table Reducibility:

 We say $A \leq_{tt} B$ if there is a recursive f, such that

 $$x \in A \iff B \models \text{the } f(x)^{th} \text{ truth table}$$

 for every x.

- A is super-low if $A' \equiv_{tt} \emptyset'$.

- A is super-high if $A' \equiv_{tt} \emptyset''$.
Stronger Forms of Reducibilities (I)

- **Truth-table Reducibility**: We say $A \leq_{tt} B$ if there is a recursive f, such that

 $$x \in A \iff B \models \text{the } f(x)^{th} \text{ truth table}$$

 for every x.

- A is super-low if $A' \equiv_{tt} \emptyset'$.

- A is super-high if $A' \equiv_{tt} \emptyset''$.
STRONGER FORMS OF REDUCIBILITIES (II)

- We say X is ω-r.e. if there are recursive f and g,

 $\lim_{s \to \infty} f(n, s) = X(n),$

 $\# \text{ changes in } f(n, s) \leq g(n),$

 for all n.

- One can show that A is super-low iff A' is ω-r.e.

- Hence, the standard construction of a low set also produces a super-low set.
STRONGER FORMS OF REDUCIBILITIES (II)

- We say X is ω-r.e. if there are recursive f and g,

$$\lim_{s \to \infty} f(n, s) = X(n),$$

$$\# \text{ changes in } f(n, s) \leq g(n),$$

for all n.

- One can show that A is super-low iff A' is ω-r.e.

- Hence, the standard construction of a low set also produces a super-low set.
Stronger Forms of Reducibilities (II)

- We say X is ω-r.e. if there are recursive f and g,

 $$\lim_{s \to \infty} f(n, s) = X(n),$$

 $$\# \text{ changes in } f(n, s) \leq g(n),$$

 for all n.

- One can show that A is super-low iff A' is ω-r.e.

- Hence, the standard construction of a low set also produces a super-low set.
Some Concepts from Randomness

- Let σ, τ, etc denote finite binary strings.

- Let U be the universal prefix-free machine.

 $$U : 2^{<\omega} \leftrightarrow 2^{<\omega},$$

 $\text{dom}(U)$ is an anti-chain under the extension relation.

- Prefix-free Kolmogorov complexity:

 $$K(\sigma) = \min\{|\tau| : U(\tau) \downarrow = \sigma\}.$$

- Measurement of compressibility.
Some Concepts from Randomness

- Let σ, τ, etc denote finite binary strings.
- Let U be the universal prefix-free machine.

$$U : 2^{<\omega} \leftrightarrow 2^{<\omega},$$

$\text{dom}(U)$ is an anti-chain under the extension relation.

- Prefix-free Kolmogorov complexity:

$$K(\sigma) = \min \{|\tau| : U(\tau) \downarrow = \sigma\}.$$

- Measurement of compressibility.
Some Concepts from Randomness

- Let σ, τ, etc denote finite binary strings.
- Let U be the universal prefix-free machine.

$$U : 2^{<\omega} \leftrightarrow 2^{<\omega},$$

$dom(U)$ is an anti-chain under the extension relation.

- Prefix-free Kolmogorov complexity:

$$K(\sigma) = \min\{|\tau| : U(\tau) \downarrow = \sigma\}.$$

- Measurement of compressibility.
Some Concepts from Randomness

- Let σ, τ, etc denote finite binary strings.

- Let U be the universal prefix-free machine.

$$U : 2^{<\omega} \leftrightarrow 2^{<\omega},$$

$dom(U)$ is an anti-chain under the extension relation.

- Prefix-free Kolmogorov complexity:

$$K(\sigma) = \min\{|\tau| : U(\tau) \downarrow = \sigma\}.$$

- Measurement of compressibility.
K-triviality (I)

- For any string \(\sigma \),
 \[
 K(\sigma) \geq K(|\sigma|) + O(1).
 \]

- A real \(\alpha \in 2^\omega \) is \(K \)-trivial, if all of it’s initial segments are highly compressible.
 \[
 K(\alpha|_n) \leq K(0^n) + O(1),
 \]
 for every \(n \).

- \(\alpha \) is “random” would mean that it is hard to compress.
- \(K \)-trivial would be opposite of what it means to be “random.”
K-triviality (I)

- For any string σ,
 \[K(\sigma) \geq K(|\sigma|) + O(1). \]

- A real $\alpha \in 2^\omega$ is **K-trivial**, if all of its initial segments are highly compressible.
 \[K(\alpha|n) \leq K(0^n) + O(1), \]
 for every n.

- α is “random” would mean that it is hard to compress.
- **K-trivial** would be opposite of what it means to be “random”.

Keng Meng, Ng Victoria University of Wellington

Traceability of the Jump
For any string \(\sigma \),

\[
K(\sigma) \geq K(|\sigma|) + \mathcal{O}(1).
\]

A real \(\alpha \in 2^\omega \) is \(K \)-trivial, if all of it’s initial segments are highly compressible.

\[
K(\alpha|_n) \leq K(0^n) + \mathcal{O}(1),
\]

for every \(n \).

\(\alpha \) is “random” would mean that it is hard to compress.

\(K \)-trivial would be opposite of what it means to be “random”.
Solovay first constructed a non-recursive K-trivial (Δ^0_2), later Zambella, Calude, Cole (r.e.).

As is now well-known - construction via cost functions by Downey, Hirschfeldt, Nies, Stephan:

- Assign a cost $c(x, s)$ for each x and s.
- We make the enumeration at stage s, if $c(x, s) < \text{some bound we can afford.}$
Solovay first constructed a non-recursive K-trivial (Δ^0_2), later Zambella, Calude, Cole (r.e.).

As is now well-known - construction via cost functions by Downey, Hirschfeldt, Nies, Stephan:

- Assign a cost $c(x, s)$ for each x and s.
- We make the enumeration at stage s, if $c(x, s) < $ some bound we can afford.
Solovay first constructed a non-recursive K-trivial (Δ^0_2), later Zambella, Calude, Cole (r.e.).

As is now well-known - construction via cost functions by Downey, Hirschfeldt, Nies, Stephan:

- Assign a cost $c(x, s)$ for each x and s.
- We make the enumeration at stage s, if $c(x, s) <$ some bound we can afford.
K-TRIVIALITY (II)

- Solovay first constructed a non-recursive K-trivial (Δ^0_2), later Zambella, Calude, Cole (r.e.).

- As is now well-known - construction via cost functions by Downey, Hirschfeldt, Nies, Stephan:
 - Assign a cost $c(x, s)$ for each x and s.
 - We make the enumeration at stage s, if $c(x, s) < \text{some bound we can afford}$.
K-triviality (III)

▷ (Downey et al.) A straightforward construction of a (promptly simple) K-trivial:

Proof.

Put x into A at stage s, if

\[
x \in W_{e,s}
\]

\[
W_{e,s} \cap A_{s-1} = \emptyset
\]

\[
x \geq 2e
\]

\[
c(x, s) < \frac{1}{2e+1}
\]
K-TRIVIALITY (III)

- (Downey et al.) A straightforward construction of a (promptly simple) K-trivial:

Proof.
Put x into A at stage s, if

$$x \in W_{e,s}$$

$$W_{e,s} \cap A_{s-1} = \emptyset$$

$$x \geq 2e$$

$$c(x, s) < \frac{1}{2^{e+1}}$$
K-TRIVIALITY (III)

(Downey et al.) A straightforward construction of a (promptly simple) K-trivial:

Proof.

Put x into A at stage s, if

$x \in W_{e,s}$

$W_{e,s} \cap A_{s-1} = \emptyset$

$x \geq 2e$

$c(x, s) < \frac{1}{2^{e+1}}$
The K-trivials have aroused great interest, and coincide with various other classes.

- (Nies) Low for K
 (i.e. $K^A(\sigma) = K(\sigma) + \mathcal{O}(1)$)

- (Nies) Low for ML-random
 (i.e. A-random=1-random)

- (Downey et al.) Every Ω-operator takes A to a c.e. real
The K-trivials have aroused great interest, and coincide with various other classes.

- (Nies) Low for K
 (i.e. $K^A(\sigma) = K(\sigma) + O(1)$)

- (Nies) Low for ML-random
 (i.e. A-random = 1-random)

- (Downey et al.) Every Ω-operator takes A to a c.e. real
The K-trivials have aroused great interest, and coincide with various other classes.

- (Nies) Low for K
 (i.e. $K^A(\sigma) = K(\sigma) + \mathcal{O}(1)$)

- (Nies) Low for ML-random
 (i.e. A-random=1-random)

- (Downey et al.) Every Ω-operator takes A to a c.e. real
The K-trivials have aroused great interest, and coincide with various other classes.

- (Nies) Low for K
 (i.e. $K^A(\sigma) = K(\sigma) + O(1)$)

- (Nies) Low for ML-random
 (i.e. A-random=1-random)

- (Downey et al.) Every Ω-operator takes A to a c.e. real
Degrees Containing K-trivials

- (Chaitin) Every K-trivial real is Δ^0_2.

- (Downey et al.) Every K-trivial real is Turing incomplete (in fact, non-high), by the Decanter Method.

- (Downey et al.) K-trivials closed under \oplus and \leq_T.

- (Nies Low$_2$-top Theorem) Bounded by an r.e. low$_2$ set.
Degrees Containing K-trivials

- (Chaitin) Every K-trivial real is Δ^0_2.

- (Downey et al.) Every K-trivial real is Turing incomplete (in fact, non-high), by the Decanter Method.

- (Downey et al.) K-trivials closed under \oplus and \leq_T.

- (Nies Low$_2$-top Theorem) Bounded by an r.e. low$_2$ set.
Degrees Containing K-trivials

- (Chaitin) Every K-trivial real is Δ^0_2.

- (Downey et al.) Every K-trivial real is Turing incomplete (in fact, non-high), by the Decanter Method.

- (Downey et al.) K-trivials closed under \oplus and \leq_T.

- (Nies Low$_2$-top Theorem) Bounded by an r.e. low$_2$ set.
Degrees Containing K-trivials

- (Chaitin) Every K-trivial real is Δ^0_2.

- (Downey et al.) Every K-trivial real is Turing incomplete (in fact, non-high), by the Decanter Method.

- (Downey et al.) K-trivials closed under \oplus and \leq_T.

- (Nies Low$_2$-top Theorem) Bounded by an r.e. low$_2$ set.
Computable Traceability (I)

- An order is a total function $h : \mathbb{N} \rightarrow \mathbb{N}$, such that h is recursive, non-decreasing and unbounded.

- (Terwijn and Zambella)
 A degree a is said to be computably traceable, if there is an order h such that for every $f \leq_T a$, there is a strong array of finite sets $\{G_n\}_{n \in \mathbb{N}}$ (called the computable trace), such that

 1. $|G_n| \leq h(n)$, and
 2. $f(n) \in G_n$.

- Computably traceable is a uniform version of being hyperimmune-free.
Computable Traceability (I)

- An order is a total function $h : \mathbb{N} \rightarrow \mathbb{N}$, such that h is recursive, non-decreasing and unbounded.

- (Terwijn and Zambella)
 A degree a is said to be computably traceable, if there is an order h such that for every $f \leq_T a$, there is a strong array of finite sets $\{G_n\}_{n \in \mathbb{N}}$ (called the computable trace), such that

 \begin{align*}
 (1) \quad |G_n| &\leq h(n), \text{ and} \\
 (2) \quad f(n) &\in G_n.
 \end{align*}

- Computably traceable is a uniform version of being hyperimmune-free.
Computable Traceability (I)

- An order is a total function $h : \mathbb{N} \rightarrow \mathbb{N}$, such that h is recursive, non-decreasing and unbounded.

- (Terwijn and Zambella) A degree a is said to be computably traceable, if there is an order h such that for every $f \leq_T a$, there is a strong array of finite sets $\{G_n\}_{n \in \mathbb{N}}$ (called the computable trace), such that

 1. $|G_n| \leq h(n)$, and
 2. $f(n) \in G_n$.

- Computably traceable is a uniform version of being hyperimmune-free.
Theorem (Terwijn and Zambella)

If \(a \) is computably traceable, then it can be computably traced by any (arbitrarily slow growing) order.

Theorem (Terwijn and Zambella)

\(a \) is computably traceable iff \(a \) is low for Schnorr tests.
Computable Traceability (II)

Theorem (Terwijn and Zambella)

If a is computably traceable, then it can be computably traced by any (arbitrarily slow growing) order.

Theorem (Terwijn and Zambella)

a is computably traceable iff a is low for Schnorr tests.
R.E. Traceability

- (Ishmukhametov) A is said to r.e. traceable if we replace computable by r.e. in the definition of computably traceable.
 - strong version = weak version.
 - A is said to be array recursive, if there is an $f \leq_{tt} \emptyset'$ such that f dominates all A-recursive function.

- **Theorem (Ishmukhametov)**

 On the r.e. degrees, r.e. traceability = array recursive = having a strong minimal cover.
 - computably traceable = r.e. traceable + hyperimmune free.
R.E. Traceability

- (Ishmukhametov) A is said to be r.e. traceable if we replace computable by r.e. in the definition of computably traceable.
- strong version = weak version.
- A is said to be array recursive, if there is an $f \leq_{tt} \emptyset'$ such that f dominates all A-recursive function.

Theorem (Ishmukhametov)

On the r.e. degrees, r.e. traceability = array recursive = having a strong minimal cover.

- computably traceable = r.e. traceable + hyperimmune free.
R.E. Traceability

- (Ishmukhametov) A is said to be r.e. traceable if we replace computable by r.e. in the definition of computably traceable.
- strong version = weak version.
- A is said to be array recursive, if there is an $f \leq_{tt} \emptyset'$ such that f dominates all A-recursive function.

Theorem (Ishmukhametov)

On the r.e. degrees, r.e. traceability = array recursive = having a strong minimal cover.
- computably traceable = r.e. traceable + hyperimmune free.
R.E. TRACEABILITY

- (Ishmukhametov) A is said to r.e. traceable if we replace computable by r.e. in the definition of computably traceable.
- strong version = weak version.
- A is said to be array recursive, if there is an $f \leq_{tt} \emptyset'$ such that f dominates all A-recursive function.

Theorem (Ishmukhametov)

On the r.e. degrees, r.e. traceability = array recursive = having a strong minimal cover.
- computably traceable = r.e. traceable + hyperimmune free.
R.E. Traceability

- (Ishmukhametov) A is said to r.e. traceable if we replace computable by r.e. in the definition of computably traceable.
- strong version = weak version.
- A is said to be array recursive, if there is an \(f \leq_{tt} \emptyset' \) such that \(f \) dominates all A-recursive function.

Theorem (Ishmukhametov)

On the r.e. degrees, r.e. traceability = array recursive = having a strong minimal cover.

- computably traceable = r.e. traceable + hyperimmune free.
We let $J^X(e)$ denote the value of the jump at input e.

(Nies) A is said to be jump traceable, if

1. There exists an order h,
2. There exists a u.r.e sequence $\{W_{g(e)}\}_{e \in \mathbb{N}}$ (called the jump trace) that traces $J^A(e)$ with bound $h(e)$.

Modification of recursive traceability; Introduced to study lowness properties.

Keng Meng, Ng Victoria University of Wellington
We let $J^X(e)$ denote the value of the jump at input e.

(Nies) A is said to be jump traceable, if

1. There exists an order h,
2. There exists a u.r.e sequence $\{W_{g(e)}\}_{e \in \mathbb{N}}$ (called the jump trace) that traces $J^A(e)$ with bound $h(e)$.

Modification of recursive traceability; Introduced to study lowness properties.
We let $J^X(e)$ denote the value of the jump at input e
$\{e\}^X(e)$.

(Nies) A is said to be jump traceable, if

1. \exists an order h,
2. \exists a u.r.e sequence $\{W_{g(e)}\}_{e \in \mathbb{N}}$ (called the jump trace)
that traces $J^A(e)$ with bound $h(e)$.

Modification of recursive traceability;
Introduced to study lowness properties.
Lowness of the Jump Traceables

Every jump traceable set is generalized low\(_1\).
\((A' \leq_T A \oplus \emptyset')\)

Theorem (Nies)
An r.e. set \(A\) is jump traceable iff \(A\) is super-low.

Theorem (Nies)
However, neither direction holds for the \(\Delta^0_2\) sets.
Lowness of the Jump Traceables

- Every jump traceable set is generalized low$_1$.
 \[(A' \leq_T A \oplus \emptyset')\]

Theorem (Nies)

An r.e. set A is jump traceable iff A is super-low.

Theorem (Nies)

However, neither direction holds for the Δ^0_2 sets.
Lowness of the Jump Traceables

Every jump traceable set is generalized low₁.

\((A' \leq_T A \oplus \emptyset')\)

Theorem (Nies)

An r.e. set \(A\) is jump traceable iff \(A\) is super-low.

Theorem (Nies)

However, neither direction holds for the \(\Delta^0_2\) sets.
\[\emptyset' \text{ is the join of two super-low r.e. sets.} \]
Hence the r.e. jump traceables do not form an ideal (unlike the \(K \)-trivials).

\[\text{However, there is an r.e. super-low set } A, \text{ such that for all other r.e. super-low sets } W, \text{ the join } A \oplus W \text{ is still super-low.} \]
\emptyset' is the join of two super-low r.e. sets.
Hence the r.e. jump traceables do not form an ideal (unlike the K-trivials).

However, there is an r.e. super-low set A, such that for all other r.e. super-low sets W, the join $A \oplus W$ is still super-low.
Introduction (I)

- Related work goes back to Bickford and Mills. An r.e. degree a is deep if for all r.e. b,
 \[(a \cup b)' = b'.\]

- The search for natural definable ideals. Unfortunately, the deep r.e. degrees form a trivial ideal:

Theorem (Lempp and Slaman)

*The only deep r.e. degree is 0.***
Introduction (I)

- Related work goes back to Bickford and Mills. An r.e. degree a is deep if for all r.e. b,

$$(a \cup b)' = b'.$$

- The search for natural definable ideals.

Unfortunately, the deep r.e. degrees form a trivial ideal:

Theorem (Lempp and Slaman)

The only deep r.e. degree is 0.

Keng Meng, Ng Victoria University of Wellington

Traceability of the Jump
Introduction (I)

- Related work goes back to Bickford and Mills. An r.e. degree a is deep if for all r.e. b,

$$ (a \cup b)' = b'. $$

- The search for natural definable ideals. Unfortunately, the deep r.e. degrees form a trivial ideal:

Theorem (Lempp and Slaman)

*The only deep r.e. degree is 0.***
Introduction (II)

- We can modify deepness by requiring a to preserve the jump on some subclass of the r.e. degrees.

- (Cholak, Groszek and Slaman) An r.e. degree a is almost deep, if for every low r.e. b, the join $a \cup b$ is still low.

- Hence, an almost deep degree preserves the jump on all low r.e. degrees. This is not possible for low$_2$ r.e. degrees.
We can modify deepness by requiring a to preserve the jump on some subclass of the r.e. degrees.

(Cholak, Groszek and Slaman) An r.e. degree a is almost deep, if for every low r.e. b, the join $a \cup b$ is still low.

Hence, an almost deep degree preserves the jump on all low r.e. degrees. This is not possible for low$_2$ r.e. degrees.
INTRODUCTION (II)

- We can modify deepness by requiring a to preserve the jump on some subclass of the r.e. degrees.

- (Cholak, Groszek and Slaman) An r.e. degree a is almost deep, if for every low r.e. b, the join $a \cup b$ is still low.

- Hence, an almost deep degree preserves the jump on all low r.e. degrees. This is not possible for low$_2$ r.e. degrees.
Introduction (iii)

Theorem (Cholak, Groszek and Slaman)

There is a non-recursive r.e. almost deep degree.

- This gives a definable ideal (using the jump).

- We consider a modification of the almost deep, by replacing “low” with “super-low” (i.e. jump traceable).
Theorem (Cholak, Groszek and Slaman)

There is a non-recursive r.e. almost deep degree.

- This gives a definable ideal (using the jump).

- We consider a modification of the almost deep, by replacing “low” with “super-low” (i.e. jump traceable).
Theorem

There is a non-recursive r.e. set A, such that if W is r.e. super-low, then $A \oplus W$ is super-low.

Requirements.

P : (Non-recursive) If W is infinite $\Rightarrow A \neq \overline{W}$,

N : (Super-deepness) If f approximates W' with at most g many mind changes, then $A \oplus W$ is super-low.
Theorem

There is a non-recursive r.e. set A, such that if W is r.e. super-low, then $A \oplus W$ is super-low.

Requirements.

\mathcal{P} : (Non-recursive) If W is infinite $\Rightarrow A \neq \overline{W}$,

\mathcal{N} : (Super-deepness) If f approximates W' with at most g many mind changes, then $A \oplus W$ is super-low.
Basic Strategy (Idea)

- Basically we split \mathcal{N} into sub-requirements $\mathcal{N}_0, \mathcal{N}_1, \cdots$, where \mathcal{N}_e tries to predict if $J^{A \oplus W}(e) \downarrow$ or $J^{A \oplus W}(e) \uparrow$.

- To do this, we will control $J^W(n)$ and challenge our opponent to respond.

- If $\langle f, g \rangle$ is indeed a correct ω-r.e. witness for W', then our opponent has no choice but to play his predictions $f(n, s)$ as dictated by us.

Force him to make a mistake, every time we make one.
Basic Strategy (Idea)

- Basically we split \mathcal{N} into sub-requirements $\mathcal{N}_0, \mathcal{N}_1, \cdots$, where \mathcal{N}_e tries to predict if $J^{A \oplus W}(e) \downarrow$ or $J^{A \oplus W}(e) \uparrow$.

- To do this, we will control $J^W(n)$ and challenge our opponent to respond.

- If $\langle f, g \rangle$ is indeed a correct ω-r.e. witness for W', then our opponent has no choice but to play his predictions $f(n, s)$ as dictated by us. Force him to make a mistake, every time we make one.
Basic Strategy (Idea)

- Basically we split \mathcal{N} into sub-requirements $\mathcal{N}_0, \mathcal{N}_1, \cdots$, where \mathcal{N}_e tries to predict if $J^{A \oplus W}(e) \downarrow$ or $J^{A \oplus W}(e) \uparrow$.

- To do this, we will control $J^W(n)$ and challenge our opponent to respond.

- If $\langle f, g \rangle$ is indeed a correct ω-r.e. witness for W', then our opponent has no choice but to play his predictions $f(n, s)$ as dictated by us.

Force him to make a mistake, every time we make one.
Basic Strategy (Idea)

- Basically we split \mathcal{N} into sub-requirements $\mathcal{N}_0, \mathcal{N}_1, \ldots$, where \mathcal{N}_e tries to predict if $J^{A \oplus W}(e) \downarrow$ or $J^{A \oplus W}(e) \uparrow$.

- To do this, we will control $J^W(n)$ and challenge our opponent to respond.

- If $\langle f, g \rangle$ is indeed a correct ω-r.e. witness for W', then our opponent has no choice but to play his predictions $f(n, s)$ as dictated by us.

 Force him to make a mistake, every time we make one.
Basic Strategy

(Step 1) Wait for $J^{A \oplus W}(e)[s] \downarrow$.
- We place n into W' and restrain A.

(Step 2) Wait for opponent to switch $f(n, s)$ to predict $J^W(n) \downarrow$.
- We then follow our opponent and guess that $J^{A \oplus W}(e) \downarrow$.

(Step 3) The only way that we can be wrong, is for a W change.
- Go back to Step 1, unless opponent has changed more than $g(n)$ times.
Basic Strategy

Step 1 \(J^{A \oplus W}(e)[s] \downarrow. \)
- We place \(n \) into \(W' \) and restraint \(A \).

Step 2 \(f(n, s) \) to predict \(J^W(n) \downarrow. \)
- We then follow our opponent and guess that \(J^{A \oplus W}(e) \downarrow. \)

Step 3 The only way that we can be wrong, is for a \(W \) change.
- Go back to Step 1, unless opponent has changed more than \(g(n) \) times.
Basic Strategy

(Step 1) Wait for $J^{A \oplus W}(e)[s] \downarrow$.
 ▶ We place n into W' and restrain A.

(Step 2) Wait for opponent to switch $f(n, s)$ to predict $J^W(n) \downarrow$.
 ▶ We then follow our opponent and guess that $J^{A \oplus W}(e) \downarrow$.

(Step 3) The only way that we can be wrong, is for a W change.
 ▶ Go back to Step 1, unless opponent has changed more than $g(n)$ times.
Strong Jump Traceability (I)

Theorem (Nies)

Every K-trivial is jump traceable.

- This is by the golden run method; Clearly it is a proper subclass.

- In fact, if A is K-trivial, then it can be jump traced at order $\sim n \log n$.

- This leads Figueira, Nies and Stephan to investigate new class...
Strong Jump Traceability (I)

Theorem (Nies)

Every K-trivial is jump traceable.

- This is by the golden run method; Clearly it is a proper subclass.

- In fact, if A is K-trivial, then it can be jump traced at order $\sim n \log n$.

- This leads Figueira, Nies and Stephan to investigate new class...
(Recall) For r.e. sets, jump traceability \equiv super-lowness.

Figueira et al. defined stronger forms of both, and proved that they coincide on the r.e. sets:

(Figueira, Nies and Stephan) A is strongly jump traceable, if A is jump traceable via all order functions.

(Figueira, Nies and Stephan) A is well-approximable, if A is ω-r.e. via all order functions.
Strong Jump Traceability (II)

- (Recall) For r.e. sets, jump traceability \equiv super-lowness.

- Figueira et al. defined stronger forms of both, and proved that they coincide on the r.e. sets:

 - (Figueira, Nies and Stephan) A is strongly jump traceable, if A is jump traceable via all order functions.

 - (Figueira, Nies and Stephan) A is well-approximable, if A is ω-r.e. via all order functions.
(Recall) For r.e. sets, jump traceability \equiv super-lowness.

Figueira et al. defined stronger forms of both, and proved that they coincide on the r.e. sets:

- (Figueira, Nies and Stephan) A is strongly jump traceable, if A is jump traceable via all order functions.

- (Figueira, Nies and Stephan) A is well-approximable, if A is ω-r.e. via all order functions.
SOME FACTS

- The strongly jump traceables are downwards closed under \leq_T.

- (Nies) For r.e. sets, A is strongly jump traceable iff A' is well-approximable.

THEOREM (Figueira, Nies and Stephan)
There is a promptly simple, strongly jump traceable r.e. set.
Some Facts

- The strongly jump traceables are downwards closed under \leq_T.

- (Nies) For r.e. sets, A is strongly jump traceable iff A' is well-approximable.

Theorem (Figueira, Nies and Stephan)

There is a promptly simple, strongly jump traceable r.e. set.
Proof of Existence of S.J.T. (I)

- We build an r.e. A satisfying the requirements:

 $P_e : \ |W_e| = \infty \Rightarrow A \cap W_e \neq \emptyset$,

 $N_e : \ h_e$ is an order $\Rightarrow A$ is jump traceable via h_e.

- N_e will build the trace $\{V_{e,k}\}_{k \in \mathbb{N}}$.

- We describe the plan to satisfy N_0.
Proof of existence of S.J.T. (I)

- We build an r.e. A satisfying the requirements:

 $\mathcal{P}_e : \ |W_e| = \infty \Rightarrow A \cap W_e \neq \emptyset,$

 $\mathcal{N}_e : h_e$ is an order $\Rightarrow A$ is jump traceable via h_e.

- \mathcal{N}_e will build the trace $\{V_{e,k}\}_{k \in \mathbb{N}}$.

- We describe the plan to satisfy \mathcal{N}_0.
Proof of existence of S.J.T. (II)

Let $I_k = \{ x \in \mathbb{N} \mid h_0(x) = k \}.$

- If $k \in I_1,$ whenever $J^A(k)[s] \downarrow$
 Enumerate the value into $V_{0,k}$ and freeze A on the use.

- If $k \in I_2,$ we could do the same.
 But we can’t increase the A-restraint for $I_2, I_3, \cdots.$

- But for $k \in I_2,$ we are allowed two attempts to trace $J^A(k).$
Proof of existence of S.J.T. (II)

- Let $l_k = \{ x \in \mathbb{N} \mid h_0(x) = k \}$.

- If $k \in l_1$, whenever $J^A(k)[s] \downarrow$
 Enumerate the value into $V_{0,k}$ and freeze A on the use.

- If $k \in l_2$, we could do the same.
 But we can’t increase the A-restraint for l_2, l_3, \ldots.

- But for $k \in l_2$, we are allowed two attempts to trace $J^A(k)$.
Proof of Existence of S.J.T. (II)

Let \(I_k = \{ x \in \mathbb{N} \mid h_0(x) = k \} \).

- If \(k \in I_1 \), whenever \(J^A(k)[s] \downarrow \)
 Enumerate the value into \(V_{0,k} \) and freeze \(A \) on the use.

- If \(k \in I_2 \), we could do the same. But we can’t increase the \(A \)-restraint for \(I_2, I_3, \ldots \).

- But for \(k \in I_2 \), we are allowed two attempts to trace \(J^A(k) \).
PROOF OF EXISTENCE OF S.J.T. (II)

▶ Let $I_k = \{ x \in \mathbb{N} \mid h_0(x) = k \}$.

▶ If $k \in I_1$, whenever $J^A(k)[s] \downarrow$
 Enumerate the value into $V_{0,k}$ and freeze A on the use.

▶ If $k \in I_2$, we could do the same.
 But we can’t increase the A-restraint for I_2, I_3, \cdots.

▶ But for $k \in I_2$, we are allowed two attempts to trace $J^A(k)$.

Keng Meng, Ng Victoria University of Wellington
Traceability of the Jump
Proof of existence of S.J.T. (III)

- So, \mathcal{N}_0 will allow \mathcal{P}_0 below it to destroy the traced value $J^A(k)[s]$.

- And it blocks all others from doing so by increasing the A-restraint on $\mathcal{P}_1, \mathcal{P}_2, \cdots$.

- Similarly if $k \in I_3$ it allows \mathcal{P}_0 and \mathcal{P}_1 to injure it. Increases the A-restraint on $\mathcal{P}_2, \mathcal{P}_3, \cdots$.

- Each positive requirement enumerates only once (promptly), and has only finite restraint on it.
So, \mathcal{N}_0 will allow \mathcal{P}_0 below it to destroy the traced value $J^A(k)[s]$.

And it blocks all others from doing so by increasing the A-restraint on $\mathcal{P}_1, \mathcal{P}_2, \cdots$.

Similarly if $k \in I_3$ it allows \mathcal{P}_0 and \mathcal{P}_1 to injure it. Increases the A-restraint on $\mathcal{P}_2, \mathcal{P}_3, \cdots$.

Each positive requirement enumerates only once (promptly), and has only finite restraint on it.
Proof of Existence of S.J.T. (III)

▶ So, \mathcal{N}_0 will allow \mathcal{P}_0 below it to destroy the traced value $J^\mathcal{A}(k)[s]$.

▶ And it blocks all others from doing so by increasing the \mathcal{A}-restraint on $\mathcal{P}_1, \mathcal{P}_2, \cdots$.

▶ Similarly if $k \in l_3$ it allows \mathcal{P}_0 and \mathcal{P}_1 to injure it. Increases the \mathcal{A}-restraint on $\mathcal{P}_2, \mathcal{P}_3, \cdots$.

▶ Each positive requirement enumerates only once (promptly), and has only finite restraint on it.
Proof of existence of S.J.T. (III)

- So, N_0 will allow P_0 below it to destroy the traced value $J^A(k)[s]$.

- And it blocks all others from doing so by increasing the A-restraint on P_1, P_2, \cdots.

- Similarly if $k \in I_3$ it allows P_0 and P_1 to injure it. Increases the A-restraint on P_2, P_3, \cdots.

- Each positive requirement enumerates only once (promptly), and has only finite restraint on it.
Introduction
Part 1 - Tracing The Jump
Part 2 - Relativization

Some More Facts

- Being K-trivial implies that A doesn’t help in the compression when used as oracle.

- However, we can characterize strongly jump traceables by the fact that C^A is very close to C:

Theorem (Figueira, Nies and Stephan)

A is strongly jump traceable iff

$(\forall$ orders $h)(\forall^{\infty} x) C(x) \leq C^A(x) + h(C^A(x))$.

Keng Meng, Ng Victoria University of Wellington

Traceability of the Jump
Being K-trivial implies that A doesn’t help in the compression when used as oracle.

However, we can characterize strongly jump traceables by the fact that C^A is very close to C:

\[
\forall \text{ orders } h \forall \infty x \quad C(x) \leq C^A(x) + h(C^A(x)).
\]

Theorem (Figueira, Nies and Stephan)

A is strongly jump traceable iff
\[
(\forall \text{ orders } h)(\forall \infty x) \quad C(x) \leq C^A(x) + h(C^A(x)).
\]
Some More Facts

- Being K-trivial implies that A doesn’t help in the compression when used as oracle.

- However, we can characterize strongly jump traceables by the fact that C^A is very close to C:

Theorem (Figueira, Nies and Stephan)

A is strongly jump traceable iff

$$\forall \text{ orders } h)(\forall \infty x) \ C(x) \leq C^A(x) + h(C^A(x)).$$
(Recall) K-trivials \subsetneq jump traceables.

The search for a combinatorial characterization for the K-trivials lead Miller and Nies to ask if

$$K\text{-trivials} \equiv \text{strongly jump traceables}.$$

This new class turns out to be a proper subclass of the K-trivials:

Theorem (Cholak, Downey and Greenberg)

A is r.e. and strongly jump traceable \Rightarrow A is K-trivial.
A PROPER SUBCLASS OF THE \(K \)-TRIVIALS (I)

- (Recall) \(K \)-trivials \(\subset \) jump traceables.
- The search for a combinatorial characterization for the \(K \)-trivials lead Miller and Nies to ask if

\[
\text{\(K \)-trivials} \overset{?}{=} \text{strongly jump traceables.}
\]

- This new class turns out to be a proper subclass of the \(K \)-trivials:

Theorem (Cholak, Downey and Greenberg)

\(A \) is r.e. and strongly jump traceable \(\Rightarrow \) \(A \) is \(K \)-trivial.
A Proper Subclass of the \(K \)-trivials (I)

▷ (Recall) \(K \)-trivials \(\subsetneq \) jump traceables.

▷ The search for a combinatorial characterization for the \(K \)-trivials lead Miller and Nies to ask if

\[
\text{\(K \)-trivials } \equiv \text{ strongly jump traceables.}
\]

▷ This new class turns out to be a proper subclass of the \(K \)-trivials:

Theorem (Cholak, Downey and Greenberg)

\[
\text{A is r.e. and strongly jump traceable } \Rightarrow \text{ A is } K \text{-trivial.}
\]
A Proper Subclass of the \(K \)-trivials (II)

Theorem (Cholak, Downey and Greenberg)

There is a \(K \)-trivial that is not strongly jump traceable
(at order \(\sim \log \log n \)).

- This suggests that some combinatorial characterization
 might still be found at some growth rate between the two.

- It is an interesting open question as to whether or not the
 strongly jump traceables form an ideal (just like the
 \(K \)-trivials).
A PROPER SUBCLASS OF THE K-TRIVIALS (II)

Theorem (Cholak, Downey and Greenberg)

There is a K-trivial that is not strongly jump traceable (at order $\sim \log \log n$).

- This suggests that some combinatorial characterization might still be found at some growth rate between the two.

- It is an interesting open question as to whether or not the strongly jump traceables form an ideal (just like the K-trivials).
A Proper Subclass of the \(K\)-trivials (II)

Theorem (Cholak, Downey and Greenberg)

There is a \(K\)-trivial that is not strongly jump traceable (at order \(\sim \log \log n\)).

- This suggests that some combinatorial characterization might still be found at some growth rate between the two.

- It is an interesting open question as to whether or not the strongly jump traceables form an ideal (just like the \(K\)-trivials).
Theorem

There is a non-recursive r.e. set A, such that if W is r.e. strongly jump traceable, then so is $A \oplus W$.

Proof.

Follows more or less from the uniformity of the proof of an almost super deep.

i.e. If $\langle f, g \rangle$ is a correct ω-r.e. witness for W', we have made $(A \oplus W)' \omega$-r.e. with bound \hat{g}.
A Proper Subclass of the K-trivials (III)

Theorem

There is a non-recursive r.e. set A, such that if W is r.e. strongly jump traceable, then so is $A \oplus W$.

Proof.

Follows more or less from the uniformity of the proof of an almost super deep.

i.e. If $\langle f, g \rangle$ is a correct ω-r.e. witness for W', we have made $(A \oplus W)' \omega$-r.e. with bound \hat{g}.
Introduction

The most natural example of a non recursive set is \emptyset'.
Relativization produces $X \mapsto X'$ (r.e. in and above X).

Generalization of this notion:
For each e, the e^{th} pseudo-jump operator

$$H_e : X \mapsto X \oplus W_e^X.$$

In some sense, $H_e(X)$ relates to X in the same way as how W_e relates to \emptyset.
The most natural example of a non recursive set is \emptyset'. Relativization produces $X \mapsto X'$ (r.e. in and above X).

Generalization of this notion:
For each e, the e^{th} pseudo-jump operator

$$H_e : X \mapsto X \oplus W_e^X.$$

In some sense, $H_e(X)$ relates to X in the same way as how W_e relates to \emptyset.
The most natural example of a non recursive set is \emptyset'. Relativization produces $X \mapsto X'$ (r.e. in and above X).

Generalization of this notion:
For each e, the e^{th} pseudo-jump operator

$$H_e : X \mapsto X \oplus W_e^X.$$

In some sense, $H_e(X)$ relates to X in the same way as how W_e relates to \emptyset.

Keng Meng, Ng Victoria University of Wellington
We say that A completes the pseudo-jump operator H_e, if $H_e(A) \equiv_T \emptyset'$.

Theorem (Jockusch and Shore)
Every pseudo-jump operator has an r.e. non-recursive completion.

- Implies that \emptyset' always has the relativized property.
 - Relativize the construction of a low r.e. set \Rightarrow High r.e. A.
 - High construction \Rightarrow Get a low$_2$ set.
 - Jump traceable construction \Rightarrow Get a super-high set.
We say that A completes the pseudo-jump operator H_e, if $H_e(A) \equiv_T \emptyset'$.

Theorem (Jockusch and Shore)

Every pseudo-jump operator has an r.e. non-recursive completion.

- Implies that \emptyset' always has the relativized property.
 - Relativize the construction of a low r.e. set \Rightarrow High r.e. A.
 - High construction \Rightarrow Get a low$_2$ set.
 - Jump traceable construction \Rightarrow Get a super-high set.
Pseudo-jump Inversion (I)

We say that A completes the pseudo-jump operator H_e, if $H_e(A) \equiv_T \emptyset'$.

Theorem (Jockusch and Shore)
Every pseudo-jump operator has an r.e. non-recursive completion.

- Implies that \emptyset' always has the relativized property.
 - Relativize the construction of a low r.e. set \Rightarrow High r.e. A.
 - High construction \Rightarrow Get a low$_2$ set.
 - Jump traceable construction \Rightarrow Get a super-high set.
Pseudo-jump Inversion (I)

- We say that A completes the pseudo-jump operator H_e, if $H_e(A) ≡_T \emptyset'$.

Theorem (Jockusch and Shore)

Every pseudo-jump operator has an r.e. non-recursive completion.

- Implies that \emptyset' always has the relativized property.
 - Relativize the construction of a low r.e. set \Rightarrow High r.e. A.
 - High construction \Rightarrow Get a low$_2$ set.
 - Jump traceable construction \Rightarrow Get a super-high set.
We say that A completes the pseudo-jump operator H_e, if $H_e(A) \equiv_T \emptyset'$.

Theorem (Jockusch and Shore)

Every pseudo-jump operator has an r.e. non-recursive completion.

- Implies that \emptyset' always has the relativized property.
 - Relativize the construction of a low r.e. set \Rightarrow High r.e. A.
 - High construction \Rightarrow Get a low$_2$ set.
 - Jump traceable construction \Rightarrow Get a super-high set.
Pseudo-Jump Inversion (II)

- Look at the relativizations of the two classes
 strongly jump traceables $\subset K$-trivials.

- A is almost complete if \emptyset' is K-trivial relative to it.

 $K^A(\emptyset'|_n) \leq K^A(n) + O(1)$ for all n.

- A is ultra-high if \emptyset' is strongly jump traceable relative to it.

- Their existence + incompleteness follow from the pseudo-jump theorem.
PSEUDO-JUMP INVERSION (II)

- Look at the relativizations of the two classes

 strongly jump traceables $\subset K$-trivials.

- A is almost complete if \emptyset' is K-trivial relative to it.

 $$K^A(\emptyset' \upharpoonright n) \leq K^A(n) + O(1) \text{ for all } n.$$

 A is ultra-high if \emptyset' is strongly jump traceable relative to it.

- Their existence + incompleteness follow from the pseudo-jump theorem.
PSEUDO-JUMP INVERSION (II)

▶ Look at the relativizations of the two classes

strongly jump traceables $\not\subseteq K$-trivials.

▶ A is almost complete if \emptyset' is K-trivial relative to it.

$$K^A(\emptyset'|n) \leq K^A(n) + O(1) \text{ for all } n.$$

A is ultra-high if \emptyset' is strongly jump traceable relative to it.

▶ Their existence + incompleteness follow from the pseudo-jump theorem.
Introduction

(Dobrinen and Simpson) \(a \) is uniformly almost everywhere (u.a.e.) dominating if there is \(f \leq_T a \), such that

\[
\mu \left(\{ X \in 2^\omega : \forall g \leq_T X \Rightarrow g \leq^* f \} \right) = 1
\]

Much stronger than a dominant function.

(Martin) Degrees computing dominant functions are just the high ones.

How about for u.a.e. domination? At least high.
Introduction

(Dobrinen and Simpson) a is uniformly almost everywhere (u.a.e.) dominating if there is $f \leq_T a$, such that

$$
\mu\left(\{X \in 2^\omega : \forall g \leq_T X \Rightarrow g \leq^* f\}\right) = 1
$$

Much stronger than a dominant function.

(Martin) Degrees computing dominant functions are just the high ones.

How about for u.a.e. domination? At least high.
Characterizing the u.a.e. dominating (I)

- (Kurtz) There is such a function of degree $0'$. Hence every degree $\geq 0'$ is u.a.e. dominating.

- (Dobrinen and Simpson) Conjecture:
 u.a.e. dominating degrees = high degrees?
 u.a.e. dominating degrees = complete degrees?

- Answer: Somewhere in the middle.
(Kurtz) There is such a function of degree $0'$. Hence every degree $\geq 0'$ is u.a.e. dominating.

(Dobrinen and Simpson) Conjecture:
- u.a.e. dominating degrees = high degrees?
- u.a.e. dominating degrees = complete degrees?

Answer: Somewhere in the middle.
CHARACTERIZING THE U.A.E. DOMINATING (I)

- (Kurtz) There is such a function of degree $0'$. Hence every degree $\geq 0'$ is u.a.e. dominating.

- (Dobrinen and Simpson) Conjecture: u.a.e. dominating degrees = high degrees? u.a.e. dominating degrees = complete degrees?

- Answer: Somewhere in the middle.
Characterizing the u.a.e. dominating (ii)

- (Cholak, Greenberg and Miller) There is such a function of degree $< 0'$. So, u.a.e. dominating degrees \neq complete degrees.

- (Binns et al., indeptly Greenberg and Miller) There is a high degree that is not u.a.e. dominating. So, u.a.e. dominating degrees \neq high degrees.
Characterizing the u.a.e. dominating (II)

- (Cholak, Greenberg and Miller)
 There is such a function of degree $\prec 0'$.
 So, u.a.e. dominating degrees \neq complete degrees.

- (Binns et al., indeptly Greenberg and Miller)
 There is a high degree that is not u.a.e. dominating.
 So, u.a.e. dominating degrees \neq high degrees.
Characterizing the u.a.e. dominating (iii)

Theorem (Binns et al. via work of Nies)

If $A \in \Delta^0_2$ and has u.a.e. dominating degree
$\Rightarrow A$ is almost complete.

Corollary

u.a.e. dominating degrees \neq high degrees.

Proof.

Every almost complete is super-high.
Theorem (Binns et al. via work of Nies)

If $A \in \Delta_2^0$ and has u.a.e. dominating degree

\Rightarrow A is almost complete.

Corollary

u.a.e. dominating degrees \neq high degrees.

Proof.

Every almost complete is super-high.
Theorem (Binns et al.)

u.a.e. dominating = almost complete.

Corollary

u.a.e. dominating degrees ≠ complete degrees.

Proof.

There is an incomplete, almost complete degree.

Traceability of the Jump
Theorem (Binns et al.)

* u.a.e. dominating = almost complete.

Corollary

* u.a.e. dominating degrees ≠ complete degrees.

Proof.

There is an incomplete, almost complete degree.
Almost Complete Degrees

Theorem (Nies and Shore)
There is an r.e. almost complete A, and an r.e. K-trivial B such that $A \nleq_T B$.

- Can we avoid upper cones (of r.e. sets) in general?

- (Barmpalias) Constructed a cappable almost complete.

- The more general question:
Can we make an r.e. minimal pair of almost complete?
Theorem (Nies and Shore)

There is an r.e. almost complete A, and an r.e. K-trivial B such that $A \nless_T B$.

- Can we avoid upper cones (of r.e. sets) in general?

- (Barmpalias) Constructed a cappable almost complete.

- The more general question:
 Can we make an r.e. minimal pair of almost complete?
Almost Complete Degrees

Theorem (Nies and Shore)
There is an r.e. almost complete A, and an r.e. K-trivial B such that \(A \nind_T B \).

- Can we avoid upper cones (of r.e. sets) in general?

- (Barmpalias) Constructed a cappable almost complete.

- The more general question:
 Can we make an r.e. minimal pair of almost complete?
THEOREM

There is an r.e. minimal pair of super-high.

REQUIREMENTS.

We need to enumerate A, B and tt-functionals Γ, Δ satisfying the requirements:

\mathcal{N}_e : If $\Phi^A_e = \Phi^B_e = h$ is total, then h is recursive,

\mathcal{P}^A_e : $\text{Tot}(e) = \Gamma^{A'}(e)$,

\mathcal{P}^B_e : $\text{Tot}(e) = \Delta^{B'}(e)$.

where $\text{Tot} = \{ i \mid i^{th} \text{ partial rec. function is total} \}$.
Requirements

Theorem

There is an r.e. minimal pair of super-high.

Requirements.

We need to enumerate A, B and tt-functionals Γ, Δ satisfying the requirements:

- \mathcal{N}_e: If $\Phi^A_e = \Phi^B_e = h$ is total, then h is recursive,
- \mathcal{P}^A_e: $\text{Tot}(e) = \Gamma^A'(e)$,
- \mathcal{P}^B_e: $\text{Tot}(e) = \Delta^B'(e)$.

where $\text{Tot} = \{i \mid i^{th} \text{ partial rec. function is total}\}$.
The Positive Strategy (I)

- P^A_e builds $\Gamma^A(e)$:
 Wants to control the configuration of an initial segment of A'.

- Fix two numbers η_f and η_∞ targeted for A'.

 - Every time $\text{Tot}(e)$ looks like 0,
 Put η_f into $A'[s]$ with some use $\geq s$.

 - Every time $\text{Tot}(e)$ looks like 1,
 Take η_f out of $A'[s + 1]$ by making an enumeration into A,
 Put η_∞ into $A'[s]$.
THE POSITIVE STRATEGY (I)

- P^A_e builds $\Gamma^A'(e)$:
 Wants to control the configuration of an initial segment of A'.

- Fix two numbers η_f and η_∞ targetted for A'.
 - Every time $\text{Tot}(e)$ looks like 0,
 Put η_f into $A'[s]$ with some use $> s$.
 - Every time $\text{Tot}(e)$ looks like 1,
 Take η_f out of $A'[s + 1]$ by making an enumeration into A.
 Put η_∞ into $A'[s]$.

Keng Meng, Ng Victoria University of Wellington
Traceability of the Jump
THE POSITIVE STRATEGY (I)

- \mathcal{P}_e^A builds $\Gamma^A(e)$:
 Wants to control the configuration of an initial segment of A'.

- Fix two numbers η_f and η_∞ targeted for A'.
 - Every time $\text{Tot}(e)$ looks like 0,
 Put η_f into $A'[s]$ with some use $> s$.
 - Every time $\text{Tot}(e)$ looks like 1,
 Take η_f out of $A'[s + 1]$ by making an enumeration into A.
 Put η_∞ into $A'[s]$.
THE POSITIVE STRATEGY (I)

- P_e^A builds $\Gamma^A'(e)$:
 Wants to control the configuration of an initial segment of A'.

- Fix two numbers η_f and η_∞ targetted for A'.

 - Every time $Tot(e)$ looks like 0,
 Put η_f into $A'[s]$ with some use $> s$.

 - Every time $Tot(e)$ looks like 1,
 Take η_f out of $A'[s+1]$ by making an enumeration into A.
 Put η_∞ into $A'[s]$.
THE POSITIVE STRATEGY (II)

- If $\text{Tot}(e)$ plays the Σ_2 outcome, then
 \[A'(\eta_f)A'(\eta_\infty) = 1x. \]

- If $\text{Tot}(e)$ plays the Π_2 outcome, then
 \[A'(\eta_f)A'(\eta_\infty) = 01. \]

- The same strategy is used for the B requirements.
THE POSITIVE STRATEGY (II)

- If $\text{Tot}(e)$ plays the Σ_2 outcome, then

 \[A'(\eta_f)A'(\eta_\infty) = 1x. \]

- If $\text{Tot}(e)$ plays the Π_2 outcome, then

 \[A'(\eta_f)A'(\eta_\infty) = 01. \]

- The same strategy is used for the B requirements.
The Negative Requirements

- The negative requirement \mathcal{N} will want to prevent enumerations into A or B to preserve the common value

$$\Phi^A(x)[s] = \Phi^B(x)[s].$$

- At times \mathcal{P}^A might want to take η_f out A'. He can’t do it if some $\Phi^A(x)$ computation has converged after η_f was put into A', and \mathcal{N} wants to preserve that.

- Solution: Is to let \mathcal{P}^A control four bits of A' (instead of just two bits).

$(\eta^A_f, \eta^A_\infty)$ used when \mathcal{N} is not holding A-restraint.

$(\eta^B_f, \eta^B_\infty)$ used when \mathcal{N} is holding A-restraint.
THE NEGATIVE REQUIREMENTS

- The negative requirement \mathcal{N} will want to prevent enumerations into A or B to preserve the common value

$$\Phi^A(x)[s] = \Phi^B(x)[s].$$

- At times \mathcal{P}^A might want to take η_f out A'. He can’t do it if some $\Phi^A(x)$ computation has converged after η_f was put into A', and \mathcal{N} wants to preserve that.

- Solution: Is to let \mathcal{P}^A control four bits of A' (instead of just two bits).

 $(\eta^A_f, \eta^A_\infty)$ used when \mathcal{N} is not holding A-restraint.

 $(\eta^B_f, \eta^B_\infty)$ used when \mathcal{N} is holding A-restraint.
The Negative Requirements

- The negative requirement \mathcal{N} will want to prevent enumerations into A or B to preserve the common value

$$\phi^A(x)[s] = \phi^B(x)[s].$$

- At times \mathcal{P}^A might want to take η_f out A'. He can’t do it if some $\phi^A(x)$ computation has converged after η_f was put into A', and \mathcal{N} wants to preserve that.

- Solution: Is to let \mathcal{P}^A control four bits of A' (instead of just two bits).

$(\eta_f^A, \eta_\infty^A)$ used when \mathcal{N} is not holding A-restraint.

$(\eta_f^B, \eta_\infty^B)$ used when \mathcal{N} is holding A-restraint.
Generally if \mathcal{P}^A lives below e negative requirements, it will need code $\text{Tot}(e)$ into A' using a truth table of width $\sim 2^e$.

Hence \emptyset' would be jump traceable relative to A (as well as B) via order $\sim 2^e$.

This is a very generous bound. Can we do better?
Generally if P^A lives below e negative requirements, it will need code $\text{Tot}(e)$ into A' using a truth table of width $\sim 2^e$.

Hence \emptyset' would be jump traceable relative to A (as well as B) via order $\sim 2^e$.

This is a very generous bound. Can we do better?
Consider a minimal pair requirement \mathcal{N} and an A-positive requirement \mathcal{P}^A.

\mathcal{N} is building a recursive function h that captures the common value of $\Phi^A = \Phi^B = h$.
THE SECOND PROBLEM (II)

\[\mathcal{N} \text{ preserving } A \text{ computations} \]

\[\text{dom}(h)[s] \]

B-use

A-use

Keng Meng, Ng Victoria University of Wellington
THE SECOND PROBLEM (II)

\mathcal{P}^A puts η^B_f into A'

B

A

η^B_f-use

A-use

$dom(h)[s]$

B-use
THE SECOND PROBLEM (II)

\mathcal{N} recovers

\[
\begin{align*}
B & \quad A \\
& \quad \downarrow \downarrow \\
& \quad \uparrow \uparrow \\
& \quad \text{dom}(h)[s]
\end{align*}
\]

- η_f^B-use
- η_f^A-use
- B-use
- A-use

Keng Meng, Ng Victoria University of Wellington
Traceability of the Jump
THE SECOND PROBLEM (II)

\mathcal{N} recovers

Solution: Delay extending $\text{dom}(h)$ until the computation is “believable”
Given a pseudo-jump operation, what are the properties of the completing sets?

Theorem (Coles, Downey, Jockusch and LaForte)

Any pseudo-jump operator V, such that $\forall r.e. X (X <_T V^X)$, always has Turing incomparable r.e. completions.

They also showed that if V is non-trivial over the d.r.e. sets, then V has a proper d.r.e. completion.
Pseudo-jump Completions

- Given a pseudo-jump operation, what are the properties of the completing sets?

Theorem (Coles, Downey, Jockusch and LaForte)

Any pseudo-jump operator V, such that $\forall r.e. X (X <_T V^X)$, always has Turing incomparable r.e. completions.

- They also showed that if V is non-trivial over the d.r.e. sets, then V has a proper d.r.e. completion.
Theorem (Impossibility of Cone Avoidance)

There is a pseudo-jump operator V, and an r.e. $C > T \emptyset$, such that

(I) \forall r.e. X ($X < T V^X$),

(II) If $V^W_e \equiv_T \emptyset'$, then $W_e \geq_T C$.

It is not known if the theorem can be strengthened to make V non-trivial on all oracles.
(since any natural operator must be so).
THEOREM (IMPOSSIBILITY OF CONE AVOIDANCE)
There is a pseudo-jump operator V, and an r.e. $C >_T \emptyset$, such that

(I) \forall r.e. X ($X <_T V^X$),
(II) If $V^{W_e} \equiv_T \emptyset'$, then $W_e \geq_T C$.

It is not known if the theorem can be strengthened to make V non-trivial on all oracles. (since any natural operator must be so).
Further Questions

- Take any pseudo-jump operator V non-trivial on the r.e. sets.
- Since we can’t avoid cones, there cannot be a minimal pair of completions.
- But can we have a cappable completion?
- The ultra-high is a (natural) pseudo-jump operator, which had hopes of possibly having no cappable completion.
FURTHER QUESTIONS

- Take any pseudo-jump operator V non-trivial on the r.e. sets.
- Since we can’t avoid cones, there cannot be a minimal pair of completions.
- But can we have a cappable completion?
- The ultra-high is a (natural) pseudo-jump operator, which had hopes of possibly having no cappable completion.
FURTHER QUESTIONS

- Take any pseudo-jump operator V non-trivial on the r.e. sets.
- Since we can’t avoid cones, there cannot be a minimal pair of completions.
- But can we have a cappable completion?
- The ultra-high is a (natural) pseudo-jump operator, which had hopes of possibly having no cappable completion.
THEOREM

There is an r.e. ultra-high set which is half a minimal pair.

REQUIREMENTS.

We build the r.e. sets A and B, satisfying the following requirements.

- \mathcal{N}_e: If $\Phi_e^A = \Phi_e^B = h$ is total, then h is recursive,
- \mathcal{P}_e^A: If Φ_e^A is an order, make \emptyset' A-jump-traceable via Φ_e^A,
- \mathcal{P}_e^B: $|W_e| = \infty$, make $B \cap W_e \neq \emptyset$.

Keng Meng, Ng Victoria University of Wellington
Theorem

There is an r.e. ultra-high set which is half a minimal pair.

Requirements.

We build the r.e. sets A and B, satisfying the following requirements.

- \mathcal{N}_e: If $\Phi_e^A = \Phi_e^B = h$ is total, then h is recursive,
- \mathcal{P}_e^A: If Φ_e^A is an order, make \emptyset' A-jump-traceable via Φ_e^A,
- \mathcal{P}_e^B: $|W_e| = \infty$, make $B \cap W_e \neq \emptyset$.
A-Positive Strategy (I)

- If Φ_e^A is an order, we need to build a trace

 \[
 \{ V_k^A \}_{k \in \mathbb{N}} \text{ - an } A\text{-u.r.e. sequence,}
 \]

 such that for all k,

 (I) \(|V_k^A| \leq \Phi_e^A(k) \), and

 (II) \(J^{\emptyset'}(k) \in V_k^A \).

- Divide P_e^A into infinitely many subrequirements.
 Each subrequirement responsible for “tracing” $J^{\emptyset'}(k)$ for a few k’s.
A-Positive Strategy (I)

- If Φ^A_\emptyset is an order, we need to build a trace
 \[
 \{ V^A_k \}_{k \in \mathbb{N}} - \text{an } A\text{-u.r.e. sequence},
 \]
 such that for all k,

 (I) \(|V^A_k| \leq \Phi^A_\emptyset(k) \), and
 (II) \(J^{\emptyset'}(k) \in V^A_k \).

- Divide P^A_\emptyset into infinitely many subrequirements. Each subrequirement responsible for “tracing” \(J^{\emptyset'}(k) \) for a few k’s.
A-Positive Strategy (II)

Suppose $\mathcal{P}_{e,i}^A$ is responsible for tracing $J^\emptyset'(k)$.

Every time we see $J^\emptyset'(k)[s] \downarrow$, we enumerate the value into V^A_k with A-use $> s$.

However, the value $J^\emptyset'(k)[s]$ might change. So, we need make enumerations into A to clear V^A_k. Replace it with the new value.

So, each A-subrequirement needs to make infinitely many enumerations into A.
A-Positive Strategy (II)

- Suppose $P_{e,i}^A$ is responsible for tracing $J^0(k)$.

- Every time we see $J^0(k)[s] \downarrow$, we enumerate the value into V_k^A with A-use $> s$.

- However, the value $J^0(k)[s]$ might change. So, we need make enumerations into A to clear V_k^A. Replace it with the new value.

- So, each A-subrequirement needs to make infinitely many enumerations into A.

Keng Meng, Ng Victoria University of Wellington
Traceability of the Jump
Suppose $\mathcal{P}^A_{e,i}$ is responsible for tracing $J^{\emptyset'}(k)$.

Every time we see $J^{\emptyset'}(k)[s] \downarrow$, we enumerate the value into V^A_k with A-use $> s$.

However, the value $J^{\emptyset'}(k)[s]$ might change. So, we need make enumerations into A to clear V^A_k. Replace it with the new value.

So, each A-subrequirement needs to make infinitely many enumerations into A.

Keng Meng, Ng Victoria University of Wellington
Suppose $\mathcal{P}_{e,i}^A$ is responsible for tracing $J^\emptyset'(k)$.

Every time we see $J^\emptyset'(k)[s] \downarrow$, we enumerate the value into V_k^A with A-use $> s$.

However, the value $J^\emptyset'(k)[s]$ might change. So, we need make enumerations into A to clear V_k^A. Replace it with the new value.

So, each A-subrequirement needs to make infinitely many enumerations into A.
CONFLICTS

- If we could always do this, then $|V^A_k| = 1$.

- Sometimes, we have to leave a wrong trace in V^A_k. Think of each location as a “box”. Hence we are allocated $\Phi^A_\epsilon(k)$ many boxes.

- Unlike the super-high case: our tracing order was 2^k. In this case our tracing order is $\Phi^A_\epsilon(k)$ - arbitrarily slow-growing.

- Save on the number of boxes used.
If we could always do this, then $|V^A_k| = 1$.

Sometimes, we have to leave a wrong trace in V^A_k. Think of each location as a “box”. Hence we are allocated $\Phi^A_\varphi(k)$ many boxes.

Unlike the super-high case: our tracing order was 2^k. In this case our tracing order is $\Phi^A_\varphi(k)$ - arbitrarily slow-growing.

Save on the number of boxes used.
CONFLICTS

- If we could always do this, then $|V_k^A| = 1$.

- Sometimes, we have to leave a wrong trace in V_k^A. Think of each location as a "box". Hence we are allocated $\Phi_e^A(k)$ many boxes.

- Unlike the super-high case: our tracing order was 2^k. In this case our tracing order is $\Phi_e^A(k)$ - arbitrarily slow-growing.

- Save on the number of boxes used.
If we could always do this, then $|V_k^A| = 1$.

Sometimes, we have to leave a wrong trace in V_k^A. Think of each location as a “box”. Hence we are allocated $\Phi_e^A(k)$ many boxes.

Unlike the super-high case: our tracing order was 2^k. In this case our tracing order is $\Phi_e^A(k)$ - arbitrarily slow-growing.

Save on the number of boxes used.
Suppose $\mathcal{P}_{e,i}^A$ lies on level 2:

$\begin{align*}
\mathcal{P}^B \\
\mathcal{N} & \quad \mathcal{N} \\
\mathcal{P}_{e,i}^A & \quad \mathcal{P}_{e,i}^A & \quad \mathcal{P}_{e,i}^A & \quad \mathcal{P}_{e,i}^A
\end{align*}$

And we are only allowed 2 boxes (instead of 4).
Suppose $\mathcal{P}_{e,i}^A$ lies on level 2:

\[
\begin{align*}
\mathcal{P}^B & \quad \mathcal{N} & \quad \hat{\mathcal{N}} \\
\mathcal{P}_{e,i}^A & \quad \mathcal{P}_{e,i}^A & \quad \mathcal{P}_{e,i}^A & \quad \mathcal{P}_{e,i}^A
\end{align*}
\]

And we are only allowed 2 boxes (instead of 4).
Box Saving Plan

- Idea: Allow negative B-restraint to transfer sideways from left to right.
- Observation: Both \mathcal{N} and \mathcal{N} are measuring the same length of agreement.

Traceability of the Jump

Keng Meng, Ng Victoria University of Wellington
Box Saving Plan

- Idea: Allow negative B-restraint to transfer sideways from left to right.
- Observation: Both \mathcal{N} and $\mathcal{\hat{N}}$ are measuring the same length of agreement.
Suppose \mathcal{N} was visited, and $\mathcal{P}_{e,i}^A$ fills up the two boxes allocated to it.
Box Saving Plan

▶ Suppose \mathcal{N} was visited, and $\mathcal{P}^A_{e,i}$ fills up the two boxes allocated to it.

▶ When $\mathcal{\hat{N}}$ is next visited, the versions of $\mathcal{P}^A_{e,i}$ believing in $\mathcal{\hat{N}}$ have no boxes left to use (if \mathcal{N} is holding \hat{A}-restraint).
Box Saving Plan

But \(\hat{\mathcal{N}} \) can wait until the all the \(B \)-computations have recovered up to whatever \(\mathcal{N} \) is preserving.

Now restraint \(B \) on the use of these computations. \(\mathcal{N} \) no longer cares what we put in \(A \).
But \hat{N} can wait until the all the B-computations have recovered up to whatever N is preserving.

Now restraint B on the use of these computations. N no longer cares what we put in A.

Keng Meng, Ng Victoria University of Wellington
Traceability of the Jump
This plan is wrecked every time \mathcal{P}^B makes an enumeration. Only finitely often.

If \mathcal{P}^B makes infinitely many enumerations, such as making B high, no longer works.
This plan is wrecked every time \mathcal{P}^B makes an enumeration. Only finitely often.

If \mathcal{P}^B makes infinitely many enumerations, such as making B high, no longer works.
Further Questions

- Can we make a high cappable ultra-high?
- Is there a minimal pair of ultra-high? Or almost complete?
- In general, a minimal pair of super-high via any arbitrary order?
Can we make a high cappable ultra-high?

Is there a minimal pair of ultra-high? Or almost complete?

In general, a minimal pair of super-high via any arbitrary order?
Further Questions

- Can we make a high cappable ultra-high?

- Is there a minimal pair of ultra-high? Or almost complete?

- In general, a minimal pair of super-high via any arbitrary order?
Thank the organizers for this workshop.
Audience for their attention.