Use of Wavelet Transform Coefficients for Spike Detection for a Robust Intracortical Brain Machine Interface*

Gary C. F. Lee¹, Camilo Libedinsky², Cuntai Guan³ and Rosa So¹

Abstract—A common problem in Brain-Machine Interface (BMI) is the variations in neural signals over time, leading to significant decrease in decoding performance if the decoder is not re-trained. However, frequent re-training is not practical in real use case. In our work, we found that a temporally more robust system may be achieved through the use of wavelet transform in feature extraction. We used wavelet transform coefficients as means to detect spikes in neural recordings, in contrast to conventional amplitude threshold methods. Using offline data as the preliminary testbed, we showed that decoding based on firing rates determined from four levels of wavelet transform decomposition resulted in a decoder with 6-12% improvement in accuracy sustained over four weeks after training. This strategy suggests that wavelet transform coefficients for spike detection may be more temporally robust as features for decoding, and offers a good starting point for further improvements to tackle nonstationarities in BMI.

I. INTRODUCTION

Brain-Machine Interfaces (BMI) has the potential to be developed into assistive technologies for patients with severe motor disabilities by translating their thoughts to control external devices. Such devices, which include computers [1], [2], robotic arms [3], [4] or wheelchairs/mobile platforms [5], [6], can give these patients the ability to accomplish tasks that they would otherwise be unable to. In a typical BMI system, there are five key components, namely, 1) the signal acquisition system, 2) signal pre-processing, 3) feature extraction, 4) decoding algorithm and 5) control interface to the external device [7]. Using existing neural recording devices, our work primarily focuses on the feature extraction and decoding algorithm (3 and 4) to achieve optimal performance and robustness in the BMI decoder.

In our work, we focused on intracortical BMI system, where signals are recorded from the motor cortex. The development of multi-electrode arrays has given us access to intracortical recordings, thereby allowing us to record single-unit spiking activity of neurons. Many BMI algorithms have used neural firing rates as inputs, given that there has been strong foundation in the neural tuning between firing rates and directions [8].

However, BMI systems may not be temporally stable. This variability in recordings may occur for a variety of reasons, from variations in behavior, micro-movements in the implant to changes in electrode impedance during chronic implantation [9]. As a result, the BMI decoder would result in degraded performance over time in the absence of re-training [11]. However, constant recalibration and re-training is not practical during actual deployment as it causes inconvenience and frustration to the user.

One strategy is to investigate the extraction of features that are temporally more stable. Given that neural recordings contain spikes against large background noise, a robust yet simple spike detection would help in BMI performance. In this paper, we propose the use of wavelet transform as a simple feature extraction method. This paper presents our initial findings on the relevance of wavelet transform coefficients (WTCs) for spike detection in intracortical BMI decoders. In our offline tests based on pre-existing dataset collected, we found that decoders using firing rates determined from spikes in WTCs may be temporally more robust than using firing rates from conventional amplitude threshold methods, and can sustain a higher performance across weeks after training.

II. PRELIMINARIES

A. Wavelet Transform

Wavelet transform is a time-frequency analysis tool that decomposes signals into a set of wavelets, which are waveforms with compact support. Such a decomposition provides information on different frequency sub-bands while preserving its temporal information. This information is obtained through the convolution of the signal and a wavelet function, which is a scaled and shifted version of the wavelet basis (also termed as mother wavelet). Scaling by geometric series of 2 at each level of decomposition is commonly used, particularly for discrete-time signals.

In this respect, wavelet transform resembles short-time Fourier transform in providing frequency information over time; however, due to the scaling of wavelets at each decomposition level, wavelet transform provides high temporal resolution for high frequency components and high spatial resolution for low frequency components. In this work, we are focusing on the high frequency components. Furthermore, the convolution with a well-selected wavelet would aid in highlighting neural spikes and suppressing background noise. We chose ’symmlet4’ as our wavelet basis, as it has been described to be the optimal representation of neural signals amongst well-established wavelet types [12].

In traditional discrete wavelet transform, the outputs are decimated (i.e., down-sampled) by two at each level without causing any loss in information. However, such a scheme results in the loss of the shift-invariant property of the
wavelet transform, which would affect the accurate temporal localisation of spikes. Hence, we adopt the use of stationary wavelet transform (SWT), where the output is not decimated. This results in redundancy in data, but is shift-invariant and thus a more reliable representation of the spikes present.

The use of wavelet transforms is not new to neuroscience and BMI. In neuroscience, wavelet transforms have been used for spike detection [12], [13], spike sorting [14] and denoising of neural signals [15]. In BMI, it has been used with EEG and ECoG recordings to capture oscillatory components with good temporal resolution [16], [17]. However, the use of WTCs in intracortical BMI has not been well studied. The key contribution of our work is in showing the improvement WTC-based spike detection can offer to intracortical BMI performance and robustness, without the need for further intensive processing such as spike sorting or signal reconstruction from the WTCs.

B. Feature Extraction with Wavelet Transform

We propose the use of wavelet transform for spike detection due to its ability to localise high frequency information in the signal. At lower detail levels (higher frequency bands), the coefficients correspond to spiking activity, wherein the presence of a spike (similar in shape to the wavelet) corresponds to a large coefficient. Therefore, we can deploy a threshold on the WTCs to detect spikes and obtain their respective spike timings.

In this work, we took the first four detail levels of WTCs. This results in four times as many features. Given that each detail level corresponds to the convolution with differently scaled wavelets, differently shaped spikes in the raw signal may be captured as spikes in certain detail levels but not in others. Figure 1 is a representative window of the spikes detected through WTCs, compared to conventional bandpass-filtering and amplitude threshold. Note that this is not a robust spike sorting process based on matching waveforms or features, but would provide a quick and simple way of detecting spikes and differentiating distinctly different waveforms from a single recording channel. However, the relationship between spikes in raw recording and the profile in its four detail levels may require further study and characterization to better understand the kinds of features WTCs can capture.

In addition, we report that the use of WTCs can provide spike timings without the need for reconstruction for each frequency sub-band. Firing rates based on spike timings determined by WTCs can be used for decoding with comparable performance, and may be more robust to any inter-day variations in the raw signal.

III. PROPOSED DECODING ALGORITHM

A. Dataset

The performance of the decoding algorithm was assessed through offline tests with datasets collected from one macaque monkey. Details of the experiment are described in [6]. Briefly, the intracortical neural data was obtained from a macaque, implanted with multi-electrode arrays and seated on a robotic platform. The animal was trained to control the robotic platform with a 3-direction joystick to follow one of four commands: turn right for 90°, turn left for 90°, move forward for 2m, or stay still for at least 5s (right, left, forward and stop respectively). The data used was collected over seven different days within a two-month span. The data from each experimental day contained four to five sessions, each session with 20 successful trials (5 in each direction). All sessions were conducted with the monkey controlling the robotic platform using a joystick.

For our offline analysis, our goal was to develop a high performing classifier that can translate the monkey’s neural data into its control intent at every 100ms timepoint. The ground truth of the monkey’s intent was obtained from the joystick position.

B. Workflow

The offline decoding was tested on MATLAB (MathWorks Inc, Massachusetts, USA). The raw data was pre-processed to obtain the corresponding neural recording signals (100 channels), the accompanying joystick position data and the experimental session data (such as trial start and end times).

First, we establish the conventional method of calculating firing rates. The raw signals are filtered with a 2nd order elliptic bandpass filter with passband frequencies from 300 to 3000Hz, 0.1dB passband ripple and 40dB of stopband attenuation. Spikes are detected through a simple amplitude threshold using data from the first 30s from the respective sessions, wherein the threshold value for the channel \(i \) is determined using the following expression [14]:

\[
Thr_i = 5 \times \text{median}(|x_i|)/0.675
\]

(1)

where \(x_i \) are the values in the recorded signal from channel \(i \). The time associated with negative crossings from the threshold (i.e., spikes with amplitude less than negative of the threshold) was determined, and the number of spikes detected in each 100ms window gave the firing rates. We also calculated the firing rate in 500ms moving window at
every 100ms. The latter strategy has been empirically shown
to perform better than decoding with non-overlapping 100ms
bins. It is believed that the inclusion of such long history
may be more resistant to noise and provide more accurate
information on the directional intent. However, we note that
there is a compromise in refresh rate of the control com-
mands, and that the response time to changes may be slowed
due to the effects of longer history in the features used.
Additionally, noting that not all channels contain information
for the decoding, we only used features that have non-zero
in-class variance for each of the four classes.

For the new method proposed here, the key modification
from the conventional method is the replacement of
the elliptic filter with an SWT. We performed SWT and
obtain the first four detail levels (discarding the remaining
approximate level). The undecimated fast wavelet transform
function uFWT from the LTFAT toolbox [18], [19] (also listed
as SWT in the accompanying description) was used to filter
the raw neural signals. Since the transform assumes periodic
extension, the signal was de-meaned and zero-padded with
half the signal length before and after the signal prior to
taking the wavelet transform. Subsequently, we detected the
spikes through thresholding, using the same equation above,
and calculated the “firing rates” per detail level for each
channel at every 100ms non-overlapping window.

With the conventional firing rates (for 100ms non-
overlapping and 500ms moving windows) and the WTC-
based firing rates (for 100ms non-overlapping bins), we used
linear discriminant analysis (LDA) to perform classification.
Since we are investigating the temporal robustness, our
training set comprises of all observations from sessions
recorded on the first three experimental days, and the testing
set is each session for the remaining four experimental days
after, which span across one month.

IV. RESULTS AND DISCUSSION

Accuracy was calculated by the percentage of observations
at each 100ms timepoint that were correctly classified, based
on the ground truth from the joystick position. Figure 2 shows
the comparison of 4-class decoding accuracy for each
untrained experimental day; the error bars correspond to the
standard deviation of accuracy scores across the sessions in
the given experimental day. The classifier performance on
trained days is also reported using a 10-fold cross-validation.

Generally, on the untrained days, the use of WTC-based
firing rates resulted in improved decoding accuracy over
conventional firing rates for both 100ms and 500ms windows.
The accuracy with our algorithm is about 60 to 70%. As
mentioned in our previous study [6], we require roughly 70%
accuracy in decoded commands directed towards the target
direction for good control of the mobile platform. We rec-
ognize that, despite the improvement in decoding accuracy
when WTCs were used, the performance for untrained days
falls slightly short of 70%. One of the contributing factors
may be the nonstationarity in one of the classes, the ‘stop’
command, as discussed in [20].

Therefore, we re-investigated the decoder performance
for decoding the 3 directions (leaving out observations
corresponding to the ‘stop’ command). Figure 3 shows
the comparison of the 3-class decoding accuracy. The im-
provement when WTCs were used was significant, wherein
the untrained days show an average of approximately 80%
accuracy that is sustained across the four experimental days.
The performance is a significant improvement over using
conventional firing rates, particularly in the later experimen-
tal days. However, the omission of any class other than ‘stop’
did not result in similar improvements in decoding accuracy.

We noted that LDA with WTC-based firing rates is capable
of classifying the three different directions (‘left’, ‘right’ and
‘forward’), but performs worse when the fourth command
(‘stop’) is included. Hence, we believe the use of WTC-
based spike detection and LDA could serve well as a 3-class
decoder for active movement commands, but the decoding of

![Fig. 2. Comparison of 4-class decoding accuracy between the use of
c conventional firing rates (100ms and 500ms windows) and WTC-based firing
rates (100ms bins). Significant difference in mean accuracy across sessions in
a given day is denoted with (*) for \(p < 0.05 \) and (**) for \(p < 0.01 \).](image)

![Fig. 3. Comparison of 3-class decoding accuracy, by removing ‘stop’
observations, between the use of conventional firing rates and WTC-based firing
rates. Significant difference in mean accuracy across sessions in a
given day is denoted with (*) for \(p < 0.05 \) and (**) for \(p < 0.01 \).](image)
‘stop’ may require a different set of features or strategy, such as the inclusion of state classifier in addition to a directional decoder [21], presenting an opportunity for further work.

This demonstration has also shown that we can use WTCs for decoding without the need for spike sorting methods or reconstruction of signal for each level. The potential benefit of using WTC, as demonstrated in this offline analysis, is in a more prolonged performance that lasts for up to four weeks. This improvement could be due to a more precise spike detection, particularly on some detail levels, which may be more robust against noise and artifacts. However, further characterization of how WTCs help with spike detection is required to understand the underlying mechanism for the decoder’s improvement. We also recognize the need for more data across a longer period to assess the extent of robustness, as well as the need for more subjects to demonstrate the generalizability of our algorithm.

One of the key concerns using WTC-based spike detection is the processing time of the signals. As there are four times as many features to process and different filter functions used, preliminary measurements of execution time shows that feature extraction may take about nine times as long (approximately 1.1s to process 1s worth of a session’s data with WTCs, versus about 0.12s to process 1s data with conventional methods). Nevertheless, we have not made attempts to optimize the code for speed and efficiency, especially for operations like spike detection and filtering. Furthermore, in the offline tests, we processed data as a whole, rather than treating them as real-time streams. Other strategies, both algorithmic and hardware solutions, can potentially be adopted to ensure fast performance. Some design changes to the algorithm is also needed to ensure filter causality and realtime processing for implementation in online BMI.

All in all, this work demonstrated significant improvements to performance through the simple introduction of WTC-based spike detection. The inclusion of wavelet transform can easily replace the filtering step or be used in conjunction with current processing workflow. We believe that this could be one of key strategies for processing of raw data that will ensure long-term high performing decoder for BMIs, while subsequent strategies such as semi-supervised learning and other adaptive algorithm can be adopted to further improve decoding performance.

ACKNOWLEDGMENT

The authors would like to thank Clement Lim for helping with animal training and data collection.

REFERENCES

