Consider the circuit above, where the o/p from a signal source is measured to be 100mV. If the signal source is connected to V_{IN} of the amplifier with gain of 100, expected value at amplifier output V_{OUT} will be $(100 \times 100 \text{mV}) = 10V$. Since the gain of the Amplifier should be independent of the load, we will also expect V_{OUT} to remain at 10V, with or without the load connected.

Now consider the following situation where we have included the actual thevenin equivalent models of all the blocks concerned, where Z_S, Z_I and Z_O and Z_L are the equivalent input and output impedance of each respective block.

From this diagram it is obvious that the actual V_{IN} value will depend on the ratio of Z_I & Z_S, while V_{OUT} will depend on the ratio of Z_L & Z_O in addition to value of V_{IN}.

To reduce this 'loading' effect at V_{IN} and V_{OUT}, we usually try to mismatch the values of Z_I & Z_S (i.e. make $Z_I \gg Z_S$), as well as values of Z_O & Z_L (make $Z_O \ll Z_L$).

In practice, we will try to design an amplifier such that its Z_I is as high as possible (ideally ∞), and its output impedance Z_O is as low as possible (ideally 0) to minimise the loading effect.