Semantic Guided and Response Times Bounded Top-k Similarity Search over Knowledge Graphs

Yuxiang Wang1,2, Arijit Khan2, Tianxing Wu2, Jiahui Jin3, Haijiang Yan1

1 Hangzhou Dianzi University, China 2 Nanyang Technological University, Singapore 3 Southeast University, China
{lsswyx.yanlj}@hdu.edu.cn, {arijit.khan,wutianxing}@ntu.edu.sg, jjin@seu.edu.cn

Abstract—Recently, graph query is widely adopted for querying knowledge graphs. Given a query graph G_Q, the graph query finds subgraphs in a knowledge graph G that exactly or approximately match G_Q. We face two challenges on graph query: (1) the structural gap between G_Q and the predefined schema in G causes mismatch with query graph, (2) users cannot view the answers until the graph query terminates, leading to a longer system response time (SRT). In this paper, we propose a semantic-guided and response-time-bounded graph query to return the top-k answers effectively and efficiently. We leverage a knowledge graph embedding model to build the semantic graph SG_Q, and we define the path semantic similarity (pss) over SG_Q as the metric to evaluate the answer’s quality. Then, we propose an A* semantic search on SG_Q to find the top-k answers with the greatest pss via a heuristic pss estimation. Furthermore, we make an approximate optimization on A* semantic search to allow users to trade off the effectiveness for SRT within a user-specific time bound. Extensive experiments over real datasets confirm the effectiveness and efficiency of our solution.

I. INTRODUCTION

Knowledge graphs (such as DBpedia [1], Yago [2], and Freebase [3]) have been constructed in recent years, managing large-scale and real-world facts as a graph [4]. In such graphs, each node represents an entity with attributes, and each edge denotes a relationship between two entities. Querying knowledge graphs is essential for a wide range of applications, e.g., question answering and semantic search [5]. For example, consider that a user wants to find all cars produced in Germany. One can come up with a reasonable graph representation of this query as a query graph G_Q, and identify the exact or approximate matches of G_Q in a knowledge graph G using graph query models [6]–[10]. Correct answers can be returned, such as $(BMW_320, assembly, Germany)$. Graph query also acts as a fundamental component for other query forms, such as keyword and natural language query [9]. We can reduce these query forms to a graph query by translating input text to a query graph [11], [12].

To retrieve the information of interest from a knowledge graph G, users are often required to have full knowledge of the vocabulary used in G [13], as well as the underlying schemas defined in G, which is difficult for ordinary users (even professional users) [14]. Otherwise, the user-built query graph is likely to be structurally different from the predefined schemas, thus fails to return correct answers due to the mismatch with the query graph. Consider the following motivating example.

Example 1: Consider the query: Find all cars that are produced in Germany (Q117 from QALD-4 benchmark [15]). Figure 1 provides four correct graph matches with different schemas in DBpedia. Each one is represented as an n-hop path. An ordinary user may build a query graph G_Q based on the phrases from the natural language question [12]. While a professional user may build G_Q by using the controlled vocabulary (e.g., Automobile is used to represent vehicles in DBpedia) and a schema she already knew. However, both query graphs suffer from the structural mismatch problem.

Mismatch in query nodes. In G_Q^1, a query node with type Car represents the phrase “cars”. However, no entity in DBpedia has the same, or even a textually similar type for Car, because it is not a term belonging to the controlled vocabulary of DBpedia. Hence, G_Q^1 fails to find correct answers.

Mismatch in query edges. For G_Q^2, the user can retrieve 234 answers that have the same schema as graph match 1. However, more than 200 correct answers are ignored, because a 1-hop edge in G_Q^2 cannot be mapped to the semantically similar n-hop (n > 1) paths (edge-to-path mapping).

If a user has full knowledge about DBpedia, then she can build various query graphs that cover all possible schemas, to obtain all cars of interest. Generally, it is a strong assumption. As an alternative, we aim to provide a graph query system that will be able to support different query graphs without forcing users to use very controlled vocabulary or be knowledgeable about the dataset. This motivates us to fill the structural gap in graph matching by considering the semantics of query graphs.

Another crucial problem involves improving the system response time (SRT) for a graph query. SRT is the amount of time that a user waits before viewing results [16]. A shorter SRT usually indicates a better user experience. To
the best of our knowledge, no current state-of-the-art work supports response-time-bounded graph query. This motivates us to present an interactive paradigm that allows the user to trade off accuracy for SRT within a user-specific time bound \(T \). As more time is given, better answers can be returned.

In this paper, we blend semantic-guided and response-time-bounded characteristics in one system to support the top-k graph query over a knowledge graph effectively and efficiently.

A. Our Approach

Many efforts have been made for structural mismatch problem [6], [8], [10], [12], [14], [17]. Among these methods, SLQ [8] is the best one for the query node mismatch via a node transformation library, but it cannot support the edge-to-path mapping. S4 [14] is the most similar work to our paper. It mines the \(v \)-hop schemas in advance through string edit distance and frequent paths, by providing semantic instances as the prior knowledge (e.g., given by PATTY [18]). It has two limitations, that are: (1) the string edit distance cannot well represent the real semantics of mined schemas, (2) the accuracy of S4 is sensitive to the quality of prior knowledge.

Unlike S4, we present a semantic-guided search to find the semantically similar paths to query edges without prior knowledge. To the best of our knowledge, we are the first to support semantically edge-to-path mapping in graph query. Moreover, combining our method with SLQ allows us to handle mismatches in query nodes. Figure 2 shows the pipeline of our approach, which has an offline and an online phase.

Offline phase. Given a knowledge graph \(G \), we leverage a knowledge graph embedding model to represent the predicates of \(G \) in a vector space \(E \) (Section IV-A). Hence, the semantic similarities of predicates can be easily obtained through vector calculation, and this makes it possible to achieve the semantic similarities of a path in \(G \) to a query edge in \(G_Q \). To be precise, this is essential for semantically edge-to-path mapping.

Online phase. In Figure 2, we take a query graph \(G_Q \) as an input. \(G_Q \) can be of different shapes, for example, the chain, star, tree, cycle, and flower are the commonly used shapes according to [19]. We adopt a decomposition-assembly framework for \(G_Q \), which consists of four basic components.

1) Query graph decomposition. We first decompose \(G_Q \) into a set of sub-query graph \(\{g_1...g_n\} \) by a dynamic programming algorithm, subject to minimizing the possible query cost. Since this part is not our main focus in this paper, we briefly introduce it in Section III, and emphasize more on the querying of the sub-query graphs and assembling their results.

2) Semantic graph construction. To support the semantically edge-to-path mapping, we then construct a semantic graph \(SG_Q \) for each sub-query graph \(g_i \) by preserving the predicate semantic similarities on the edges of \(G \) (Section IV-B). In Figure 2, we show example semantic graphs for \(g_1 \) and \(g_2 \). For instance, each blue edge has a high semantic similarity to \(g \) Figure 1, we show example semantic graphs for \(g_1 \) and \(g_2 \).

3) Semantic-guided search. We next present an A* semantic search to find the top-k semantically similar matches for each sub-query graph \(g_i \) from the semantic graph \(SG_Q \) based on the path semantic similarity (\(pss \)). To improve the efficiency, we propose a well-designed heuristic estimation function of \(pss \) that prunes the search space (Section V-A). We prove the effectiveness guarantee of our A* semantic search in Section V-B, that is, the matches with the greatest \(pss \) must be found.

4) Threshold Algorithm (TA)-based assembly. Finally, we assemble the matches of all sub-query graphs based on the threshold algorithm (TA) [20], in order to form the final answers for \(G_Q \) in Section V-C.

Moreover, we present an approximate optimization on our semantic-guided search to enable a trade-off between accuracy and the system response time (SRT) within a user-specified time bound \(T \) (Section VI). As more time is given, more high-quality matches are refined incrementally. We prove that the globally optimal matches for \(G_Q \) can be achieved theoretically when sufficient time is given.

B. Contributions

We summarize our main contributions as follows.

- We present a decomposition-assembly framework for the top-k similarity search over knowledge graphs, which is the first work that considers the semantic-guided and response-time-bounded characteristics in one system.
- We present an A* semantic search to find semantically similar graph matches, that can efficiently prune unpromis-
Graph pattern matching is defined as a graph $G = (V, E, L)$, with the node set V, edge set E, and a label function L, where (1) each node $u \in V$ represents an entity, (2) E is an ordered subset of $V \times V$, each directed edge $e = u_i, u_j \in E$ denotes the relationship between two entities u_i and u_j, and (3) L assigns a name and various types on each node, and a predicate on each edge. Similar to [9], [30], [36], we define the type as a label on each entity, rather than a node connecting to an entity with the predicate `isA`. This assumption can reduce the size ($|E|$) of G, it also avoids dealing with irrelevant edges `isA`.

Example 2: We assume that each node u in a knowledge graph G has at least one type and a unique name [14], [35], e.g., $L(u).type = \text{Automobile}$ and $L(u).name = \text{Audi_TT}$. For each edge e, we assign a predicate as $L(e) = \text{assembly}$. If the type of a node in G is unknown, we employ a probabilistic model-based entity typing method to assign a type on it [37].

Definition 2: Query graph. A query graph is defined as a graph $G_Q = (V_Q, E_Q, L_Q)$, with query node set V_Q, edge set E_Q, and a label function L_Q, where (1) $V_Q = V^s \cup V^t$, (2) $V^s = \{v^s\}$ is a set of specific nodes, both the type and name of v^s are known, (3) $V^t = \{v^t\}$ refers to target nodes, only the type of v^t is known, (4) $\forall v \in E_Q$ has a predicate $L_Q(e)$.

Since we assume that users do not have full knowledge about the dataset, so they are allowed to represent the query nodes without using the controlled vocabulary. For the example query graph in Figure 2, $V^s = \{v_1\}$ (type: `Country` and name: `Germany`), $V^t = \{v_1, v_2\}$ (respective types: `Car`, `Person`), and `Car` is not a term defined in DBpedia’s vocabulary.

Query graph decomposition. We adopt a decomposition-assembly framework for G_Q. We decompose G_Q into sub-query graphs for querying, and then assemble the matches of all sub-query graphs to form the top-k matches of G_Q.

Definition 3: Sub-query graph. We define a sub-query graph of G_Q as a graph $g_i = (V_i, E_i, L_i)$, with the query node set V_i, query edge set E_i, and the same label function L_Q as in G_Q, where (1) g_1 is a path from a specific node v^s to a target node v^t, denoted by v^sv^t, (2) and $V_Q = \cup V_i$ and $E_Q = \cup E_i$ over all sub-query graphs g_i of G_Q.

Example 3: The query graph in Figure 2 can be decomposed into two sub-query graphs: (1) find automobiles produced in Germany $(g_1: (v_1-product-v_3))$, and (2) find automobiles designed by Germans $(g_2: (v_1-designer-v_2-nationality-v_3))$.

In general, all sub-query graphs intersect at a target node (called pivot node v^p), e.g., v_1 in Example 3. Therefore, we can assemble the final matches via a join operation at v^p. The objective of query graph decomposition is to derive a number of sub-query graphs with an appropriate pivot node, to minimize the cost of query processing (Eq. 1). We use the possible search space as the cost metric (similar to [9]) and resolve this problem through dynamic programming. The time complexity is $O(|V_Q| \cdot |E_Q|^2)$ according to [9]. We show the impact of query graph decomposition on performance and its scalability in Section VII-B and Section VII-D, respectively.

$$\arg \min_{\{g_1,...,g_n\}} \sum_{i=1}^{n} \text{cost}(g_i)$$

According to [19], the chain, star, tree, cycle, and flower are common query graph shapes in knowledge graph search, so we provide an analysis on the effect of these query graph shapes with different sizes in Section VII-D.

Sub-query graph matching. For each sub-query graph, we aim to find the semantically similar matches by identifying the candidate node (edge) matches for each query node (edge).
(1) Node match. To overcome the mismatch in query nodes, we define a one-to-many relation $\phi: V_u \rightarrow V$ considering three cases: Identical, Synonym, and Abbreviation. For each query node $v \in V_u$, $\phi(v) = \{u_1, u_2, \ldots, u_n\}$ is a set of candidate matches in V, where the type (name) of v is the same, synonymous, or abbreviated for the type (name) of u.

Usually, each node u in a knowledge graph G can have multiple types [37], then u is a node match of the query node v if one of u’s types satisfies the relation ϕ. Although we assume that each query node v has a user-specific type in Definition 2, we still need to consider the following cases to enhance the robustness. (1) If a query node v has multiple types, then we separately consider each type of v in the relation ϕ for node matching, and then consider union of all of them as the overall node matches for v. (2) If a user provides a query node v without a type, then v is a wildcard query node and can be mapped to the nodes with different types in a knowledge graph. In Section IV-B, we introduce how to implement the relation ϕ by building a transformation library.

(2) Edge match. To overcome the mismatch in query edges, we support the semantically edge-to-path mapping. Given a sub-query graph g_1 and a knowledge graph G, a path $\overline{u_iu_j} \in G$ is a match of an edge $v_i v_j \in g_1$, if $u_i \in \phi(v_i)$ and $u_j \in \phi(v_j)$. While considering paths, we ignore edge directionalities. Besides, we expect that the path $\overline{u_iu_j}$ is semantically similar to the edge $v_i v_j$. We elaborate this part in Definition 6.

Considering the sub-query graph g_1 in Figure 2, the edge matches of product are the paths from Germany to entities with type Automobile, e.g., $(e_1, e_2), (e_9, e_{10}, e_{11})$, etc. We need to identify the most semantically similar path (e_1, e_2) from other edge matches, which motivates us to define the semantic graph SG_Q for each sub-query graph g_1 as follows.

Definition 4: Semantic graph. Given a sub-query graph $g_1 = (V_i, E_i, L_Q)$ and a knowledge graph $G = (V, E, L)$, the semantic graph is a weighted sub-graph of G defined as $SG_Q = (V', E', L, W)$, with the node set $V' \subseteq V$, edge set $E' \subseteq E$, and weight set W, where (1) for each node $v \in V'$, its node match $u \in \phi(v)$ belongs to V', (2) for each edge $e = v_i v_j \in E_i$, its edge match $\overline{u_iu_j} \in SG_Q$ (i.e., $\forall e' \in \overline{u_iu_j}$ belongs to E'), (3) each e' has a weight $w \in W$ to represent the semantic similarity between e' and e (Section IV-A).

According to Definition 3, a sub-query graph g_1 is a path graph denoted as $v^p v^q$. So, we define the match of g_1 as a path in SG_Q that is semantically similar to $v^p v^q$.

Definition 5: Sub-query graph match. Given a sub-query graph $g_1 = v^p v^q$ and a semantic graph SG_Q, a path $\overline{u^p u^q} \in SG_Q$ is a match of g_1 if (1) $\overline{u^p u^q}$ comprises the edge match of each edge $v_i v_j \in g_1$, (2) the path semantic similarity (pss) of $\overline{u^p u^q}$ equals or is greater than a predefined threshold τ, denoted by $\psi(\overline{u^p u^q}, \overline{v^p v^q}) \geq \tau$.

Definition 6: Path semantic similarity (pss). We define the pss $\psi(\overline{u^p u^q}, \overline{v^p v^q})$ as a function $f(w_1, w_n)$ of all weights appearing in match $\overline{u^p u^q}$, which measures the semantic similarity of $\overline{u^p u^q}$ to g_1. The details are given in Section IV-C.

Assembly. For each sub-query graph g_1, we can obtain a set of sub-query graph matches, denoted by $M_i = \{\overline{u^p u^q}\}$. The sub-query graph matches from different M_i may intersect at the same pivot node match $\overline{u^p \varphi v^q}$, so we can assemble them at $\overline{u^p}$ to form a match for the query graph G_Q. Figure 2 shows the assembly procedure. First, we find some matches with the greatest pss for the two sub-query graphs g_1 and g_2. The match (Germany-e$_1$-e$_2$-Audi_TT) from M_1 and (Germany-e$_3$-e$_4$-Audi_TT) from M_2 can be assembled at pivot node match Audi_TT to form a match for G_Q. We define the match score of a match for G_Q as the sum of pss for all involved sub-query graph matches that intersect at the same u^p.

$$S_m(u^p) = \sum_{M_i} \psi(\overline{u^p u^q}, \overline{v^p v^q})$$

s.t. $\overline{u^p \varphi v^q} \in M_i$ that contains the same u^p

The best match of G_Q is the one with the greatest match score, such as the top-1 match involving Audi_TT in Figure 2 (with the greatest match score 1.891=0.891+1).

B. Problems

According to the background above, we derive two major problems that need to be resolved in this paper as follows.

Problem 1. Given a query graph $G_Q = \{g_1, \ldots, g_n\}$ and a knowledge graph G, we find the top-k matches M according to the match score $S_m(u^p)$ as follows.

$$M = \max_{u^p \in \hat{M}_i} (\{\hat{M}_i\})$$

s.t. $|M| = k$, $\hat{M}_i = \arg \max_{u^p \in \hat{M}_i} \psi(\overline{u^p u^q}, \overline{v^p v^q})$

In Eq. 3, we use \hat{M}_i to denote the assembly at u^p and use $\sigma_{max}(\overline{v^p v^q})$ to denote the top-k matches selection based on the match score $S_m(u^p)$. $\hat{M}_i = \{\overline{u^p u^q}\}$ are the sub-query matches with the greatest pss for each g_i. This problem is non-trivial, because (1) we need to find globally optimal \hat{M}_i for each g_i, and (2) the assembly is computationally expensive if G_Q has a large number of g_i, and each one has many candidate matches. We solve this problem efficiently in Section V.

Problem 2. Given a query graph $G_Q = \{g_1, \ldots, g_n\}$ and a knowledge graph G, we find the approximate top-k matches \hat{M} within a user-specified time bound T as follows.

$$\hat{M} = \max_{u^p \in \hat{M}_i} (\{\hat{M}_i\})$$

s.t. $|\hat{M}| = k$, time bound T, $\psi(\overline{M \cap M}, \overline{M \cup M}) \geq \tau$

We use the Jaccard similarity of \hat{M} and \hat{M} to measure the degree of approximation. With more time given ($T' > T$), \hat{M} can approach \hat{M}. The key of this problem is how to return \hat{M} quickly, and refine it as more time is given. Moreover, we need to prove that the globally optimal results can be returned if sufficient time is given (e.g., $\hat{M} = \hat{M}$). We deal with this problem in Section VI.

IV. SEMANTIC GRAPH CONSTRUCTION

In this section, we leverage a knowledge graph embedding model to construct the semantic graph SG_Q, then present the predicate semantic similarity (pss) based on SG_Q.
TABLE I. Transformation library

<table>
<thead>
<tr>
<th>Synonym and abbreviation</th>
<th>Type and names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car, Motorcar, Auto, Vehicle</td>
<td>type: <Automobile></td>
</tr>
<tr>
<td>GER, FRG, Federal Republic of Germany</td>
<td>name: Germany</td>
</tr>
</tbody>
</table>

A. Knowledge Graph Embedding

Knowledge graph embedding aims to represent each predicate and entity of a knowledge graph G as an n-dimensional semantic vector, such that the original structures and relations in G are preserved in these learned semantic vectors [4]. We summarize the core idea of most existing knowledge graph embedding methods as follows: (1) initialize the vector of each element in triple (h, r, t) as $\langle h, r, t \rangle$, where $h/r/t$ indicates the head/tail entity and r denotes the predicate, (2) define a function $g()$ to measure the relation of $\langle h, r, t \rangle$, and optimize $g()$ to satisfy $t \approx g(h, r)$. The predicate semantic space $E = \{e_1...e_n\}$ is an output of a knowledge graph embedding model. The semantic similarity between the two edges can be represented by the similarity between two predicate vectors.

In this paper, we use the cosine similarity to measure the similarity between two predicate vectors. Each weight w in the semantic graph SG_Q, denoted by $\text{sim}(L_Q(e), L(e'))$, e.g., $\text{sim}(\text{product, assembly})$, can be calculated as follows.

$$w = \text{sim}(L_Q(e), L(e')) = \frac{e \cdot e'}{||e|| \times ||e'||}$$ \hspace{1cm} (5)

We next introduce how to preserve these weights on a knowledge graph to generate semantic graph.

B. Constructing Semantic Graph

Figure 3(a) shows an example semantic graph SG_Q for the sub-query graph g_1 in Figure 2. A straightforward idea to build SG_Q is: (1) find the node matches of each query node, e.g., $\phi(v_1) = \{\text{Audi_TT}, \text{KIA_K5}, \text{BYD_Song}, \text{Hyundai_Tucson}, \text{BMW_Z4}\}$, and $\phi(v_2) = \text{Germany}$, (2) find the edge matches of each query edge, e.g., edge matches of product include paths $(e_1, e_2), (e_3, e_4), (e_3, e_5), (e_3, e_6), (e_9, e_10, e_11)$, and (e_{13}, e_{14}, e_{15}), and (3) assign weights on edges through Eq. 5.

Analysis. To find all edge matches for a query edge $\{v_i, v_j\}$, we must enumerate all possible paths between $u_i \in \phi(v_i)$ and $u_j \in \phi(v_j)$. However, the high connectivity of a knowledge graph G makes it computationally expensive.

A lightweight way. Figure 3(b) shows an alternative way to construct SG_Q on the fly. We push down the semantic graph construction to the query processing stage, which means that SG_Q is partially materialized (not completely constructed in advance). Given a sub-query graph g_1, we materialize the SG_Q as follows.

(1) Get node matches of u^*. To implement the relation ϕ for node matching, we build a synonym and abbreviation transformation library [8] for all types and names existing in G based on BabelNet (the largest multilingual synonym dictionary [38]). For instance, we invoke the API of BabelNet to collect the synonyms and abbreviations of the input keyword as one row in Table I. For each query node v^*, we use this library to find its node matches $\phi(v^*)$ through the synonym or abbreviation transformation, e.g., a query node with type Car is mapped to a set of entities with type Automobile in G.

(2) Materialize the 1-hop SG_Q for $u^* \in \phi(v^*)$. Given a node match $u^* \in \phi(v^*)$, we assign the weight w on each edge that connects to u^* based on Eq. 5, generating a 1-hop SG_Q for u^*. For example, weighted edges $\{e_1, e_3, e_9, e_{13}\}$ in Figure 3(b) act as the 1-hop SG_Q for the node Germany.

(3) Next-hop decision. Given a partially materialized SG_Q, we select a next-hop node for further querying. The selected node should be the one with the greatest probability of finding the best match for g_i. We show the details in Section V.

(4) Termination check. Starting from the next-hop, we repeat the above steps to materialize SG_Q gradually, until a node match $u^* \in \phi(v^*)$ is detected. The path u^*u^i is a match of g_i. In Figure 3(b), we can find the best matches from the partially materialized SG_Q (blue lines) excluding the dashed lines.

Remarks. To construct a complete SG_Q, we need $O(|E'|)$ time to assign weights on all the edges of SG_Q. The time complexity is expected to be reduced by constructing SG_Q partially, because a good next-hop selection would reduce the size of SG_Q, pruning the search space significantly. Moreover, a good next-hop selection also ensures that the sub-query graph match with the greatest path semantic similarity (pss) can be found. We show the details of pss in Section IV-C and show the semantic-guided search based on pss in Section V.

C. Path Semantic Similarity

We define the path semantic similarity (pss) of a sub-query graph match u^*u^i to g_i based on the following observations.

- A match u^*u^i comprises a set of edges $\{e_1...e_n\}$. Each edge e_i has a weight w that indicates the semantic similarity to one edge $e \in g_i$. Hence, the pss should be a function of all weights appearing at u^*u^i.

- According to Eq. 5, two edges are semantically similar if their predicate vectors are similar. Thus, the edges with greater w would be more beneficial to the pss.

- A smaller w usually indicates that two edges show different semantic meanings. Therefore, the edges with smaller w have a negative effect on the pss.

Example 4: In Figure 3(a), the paths (e_1, e_2) and (e_{13}, e_{14}, e_{15}) are more semantically similar to g_1 than others, because the predicate vectors of edges e_2 and e_{15} (assembly) are more similar to the one of edge product (with the greatest $w=0.98$). And other paths containing edges such as e_4 (designer), e_{10} (birthPlace), etc., show the different meanings to g_1, because e_4 and e_{10} are less semantically similar to product.
Based on these intuitions, we calculate the \(pss \) of the match \(\overrightarrow{u^t u^t} \) to \(\overrightarrow{v^s v^l} \), denoted by \(\psi(\overrightarrow{u^t u^t}, \overrightarrow{v^s v^l}) \), as the geometric mean of all weights appearing at the match \(\overrightarrow{u^t u^t} \).

\[
\psi(\overrightarrow{u^t u^t}, \overrightarrow{v^s v^l}) = \sqrt[n]{\prod_{\forall w_j \in \overrightarrow{u^t u^t}} w_j}
\]

(6)

V. SEMANTIC-GUIDED SEARCH

In this section, we first present an A* semantic search to find the top-\(k \) matches from \(SG_Q \) with the greatest path semantic similarity (\(pss \)) for each sub-query graph \(g_i \in G_Q \). We then assemble all matches for \(g_i \) to form the final matches for \(G_Q \). The classic A* search [39] finds the shortest path based on a heuristic length estimation. Here, we design the \(pss \) estimation based on semantics to find the most semantically similar paths. The basic idea of A* semantic search is that we compute a heuristic \(pss \) estimation for a possible match at each detected node, and gradually expand the search space following the guidance of the estimated \(pss \) until a match with maximum \(pss \) is found. We achieve two benefits from a good \(pss \) estimation: (1) we can find the globally optimal matches of \(g_i \), and (2) we can prune the search space significantly.

We next introduce the heuristic \(pss \) estimation in Section V-A, then discuss A* semantic search based on \(pss \) estimation and prove the effectiveness guarantee in Section V-B. Finally, we show the assembling of the matches in Section V-C.

A. Heuristic Estimation of \(pss \)

Given a match \(\overrightarrow{u^t u^t} \) of a sub-query graph \(g_i \), it can be divided into an explored partial path \(\overrightarrow{u^t u_i} \) and an unexplored partial path \(\overrightarrow{u_i u^t} \) at each detected node \(u_i \). We compute the upper bound of the exact \(pss \) \(\psi(\overrightarrow{u^t u_i}, \overrightarrow{v^s v^l}) \) at \(u_i \) as the estimated \(pss \), denoted by \(\psi(\overrightarrow{u^t u_i}, \overrightarrow{v^s v^l}) \) (\(\hat{\psi} \) for short), by considering the semantic information from both partial paths. Based on the estimated \(pss \), we can effectively prune the search space and find the sub-query graph match with the greatest \(pss \) due to the following reasons. (1) Suppose that we already find a sub-query graph match, then we can safely prune the potential matches having the smaller \(\hat{\psi} \) than the explored match’s exact \(pss \). Only the potential matches with a greater \(\hat{\psi} \) than the explored match’s exact \(pss \) would be considered for further searching. (2) Given a predefined \(pss \) threshold \(\tau \), we can prune the unpromising potential matches that have the \(\hat{\psi} < \tau \) (we set \(\tau = 0.8 \) in Section VII).

We next introduce how to obtain the upper bound \(\hat{\psi} \) of \(\psi \) for the \(pss \) estimation. And we prove the effectiveness guarantee in Section V-B (Theorem 2).

According to Eq. 6, we need the weight product \(\prod w_j \) and the path length \(n \) of a match \(\overrightarrow{u^t u^t} \) to compute the exact \(\psi \). So we first estimate the upper bound of the weight product and path length, in order to estimate the upper bound of \(\psi \).

Upper bound of the weight product. The weight product of \(\overrightarrow{u^t u^t} \) is divided into two parts at each detected node \(u_i \).

- The weight product of partial path \(\overrightarrow{u^t u_i} \), e.g., \(\prod_{\forall w_j \in \overrightarrow{u^t u_i}} w_j \).
- The weight product of partial path \(\overrightarrow{u_i u^t} \), e.g., \(\prod_{\forall w_j \in \overrightarrow{u_i u^t}} w_j \).

We can compute the exact weight product of \(\overrightarrow{u^t u^t} \) because \(\overrightarrow{u^t u_i} \) is explored in the partially materialized \(SG_Q \). On the other hand, the partial path \(\overrightarrow{u_i u^t} \) is unexplored, so we use the maximum weight of all adjacent edges of \(u_i \) as the upper bound of the weight product of \(\overrightarrow{u_i u^t} \), denoted as \(m(u_i) \).

Lemma 1: The maximum weight \(m(u_i) \) is the upper bound of the weight product of the partial path \(\overrightarrow{u_i u^t} \).

Proof: Given the weight product \(\prod_{\forall w_j \in \overrightarrow{u_i u^t}} w_j \) of \(\overrightarrow{u_i u^t} \), \(w_j \) indicates the \(j \)-th weight in \(\overrightarrow{u_i u^t} \). Due to the monotonicity of weight product, we have \(w_j \geq \prod_{\forall w_j \in \overrightarrow{u_i u^t}} w_j \). Also, \(m(u_i) \geq w_1 \) because we assume \(m(u_i) \) is the max weight of all adjacent edges of \(u_i \). Hence, we have \(m(u_i) \geq \prod_{\forall w_j \in \overrightarrow{u_i u^t}} w_j \).

Upper bound of the path length. Since different matches have different path lengths, it is difficult to get a uniform upper bound of the path length \(n \) for all matches. Hence, we relax the upper bound of the exact path length to the upper bound of the user desired path length. If a user wants to find the top-k matches within \(n \)-hop, then only the matches having \(n \leq \hat{n} \) \((\hat{n} \)-bounded match) will be returned. Hence, \(\hat{n} \) is the upper bound of the path length for all the \(\hat{n} \)-bounded matches.

Estimated \(pss \) of \(\hat{n} \)-bounded match. Given the above two upper bounds. We compute the estimated \(pss \) \(\hat{\psi} \) at each node \(u_i \neq u^t \) as follows, where \(u^t \in \phi(v^l) \) is a target node match. And we set \(\hat{\psi}_t \) equals to the exact \(pss \) \(\psi \) when \(u_i = u^t \).

\[
\hat{\psi}(\overrightarrow{u^t u_i}, \overrightarrow{v^s v^l}) = \sqrt[n]{\prod_{\forall w_j \in \overrightarrow{u^t u_i}} w_j \cdot m(u_i) }
\]

(7)

Theorem 1: The estimated \(\hat{\psi} \) is the upper bound of the exact \(pss \) \(\psi \) of the match \(\overrightarrow{u^t u_i} \overrightarrow{v^s v^l} \) with the path length \(n \leq \hat{n} \), where \(\hat{n} \) is the user desired path length.

Proof: We use notation \(W_{si} \) \((W_{it}) \) to denote the weight product of the partial path \(\overrightarrow{u^t u_i} \) \((u_i u^t) \). If \(u_i \neq u^t \), then \(\hat{\psi} = \sqrt[\hat{n}]{W_{si} \cdot m(u_i)} \geq \sqrt[\hat{n}]{W_{si} \cdot m(u_i)} \), because \(\hat{n} \geq n \) and the \(n \)-th root \(W_{si} \cdot m(u_i) < 0 \). Moreover, we have \(m(u_i) \geq W_{it} \hat{n} \) based on Lemma 1, so that \(\sqrt[\hat{n}]{W_{si} \cdot m(u_i)} \geq \sqrt[\hat{n}]{W_{si} \cdot W_{it} \hat{n} \psi} \). Hence, \(\hat{\psi} \geq \hat{\psi} \) holds. On the other hand, if \(u_i = u^t \), then \(\hat{\psi}_t = \psi \). In summary, \(\hat{\psi} \geq \hat{\psi} \) holds for all cases.

Remarks. (1) The user desired path length \(\hat{n} \) is specified by users before graph querying. (2) Our A* semantic search can find the globally optimal \(\hat{n} \)-bounded matches (proved later in Theorem 2) based on the above heuristic \(pss \) estimation.

B. A* Semantic Search

In this section, we introduce our A* semantic search based on the above \(pss \) estimation, illustrated in Algorithm 1.

Notations. We use a max-heap as the match set \(M_t \) for a sub-query graph \(g_i \) to record each found match and its \(pss \), e.g., \((\overrightarrow{u^t v^l}, \hat{\psi}) \). We use another max-heap as the priority queue \(q \) to record each explored partial path \(\overrightarrow{u^t u_i} \) and its estimated \(pss \), e.g., \((\overrightarrow{u^t u_i}, \hat{\psi}) \). For \(u_i = u^t \in \phi(v^l) \), \(\overrightarrow{u^t u_i} \) is the node \(u^t \) itself. Each node \(u_i \) indicates a next-hop choice for search space expansion. We also use a hash set \(\text{visited} \) to record all visited nodes, avoiding duplicate access. A \(pss \) threshold \(\tau \) is used to prune the unpromising matches having \(\hat{\psi} < \tau \).

Overview. Given a sub-query graph \(g_i \), we first start with the node match \(u^t \in \phi(v^l) \) for A* semantic search (line 1). The main procedures are: (1) **Next-hop selection.** We select
Algorithm 1: A* semantic search

Data: sub-query graph \(q \), number of matches \(k \)
Result: match set \(M_i \)
1: \(\forall u \in \phi(v)^+, \text{visited}(u), M_i = \emptyset; \)
2: while \(q \neq \emptyset \) do
3: \(\langle \bar{u}, \bar{v}_i \rangle \leftarrow \text{pop}_\text{max}(q); \) \(/ / \) Next-hop selection
4: if \(u \notin \phi(v) \) then \(/ / \) Search space expansion
5: for \(\forall u_i \in N(u) \) do
6: if \(\text{visited}(u_i) \) then \(/ / \) visited.add(u_i);
7: \(u' = u, u_i \); \((\bar{u}, \bar{v}_i) = \text{pssEstimation}(); \)
8: if \(\bar{v}_i \geq \tau \) then \(/ / \) \(q.\text{push}_\text{heap}(\bar{u}, \bar{v}_i); \)
9: else \(M_i.\text{push}_\text{heap}(\bar{u}, \bar{v}_i); \)
10: if \(|M_i| = k \) then break;
11: return \(M_i; \)

the node \(u_i \) with the greatest \(\bar{v}_i \) as the next-hop for search space expansion, from the priority queue \(q \) (line 3). (2) Search space expansion. Starting from \(u_i \), we expand the search space as \(\bar{u}' = u_i \cup u_i \) for each neighbour node \(u_i \) of \(u_i \), and compute \(\bar{v}_i \) for each new partial path \(\bar{u}' = u_i \) (lines 5-9). All these \((\bar{u}, \bar{v}_i) \) pairs \((\bar{v}_i \geq \tau) \) are stored in \(q \) for further exploration (lines 10-11). (3) Top-k matches check. We repeat (1) and (2) until a match \(\bar{u}' = u_i \) is popped from \(q \), where \(u_i \notin \phi(v) \). We record it in match set \(M_i \) and terminate the search until \(k \) matches are found (lines 13-15).

Example 5: Figure 4 shows an example for searching the top-1 match from a specific node match \(u_1 \) to target node matches \(\{u_7, u_{12}\} \) (we set \(n = 4 \)). The solid lines indicate the expanded search space, dotted lines show the pruned data, and red lines denote the top-1 match. Finally, 38.5% of edges and 25% of nodes are pruned. At the beginning, we expand the search space from \(u_1 \), all its neighbours are added in the priority queue \(q \), e.g., \(q = \{ (\bar{u}_1, \bar{v}_1, 0.81), (\bar{u}_2, \bar{v}_2, 0.86), (\bar{u}_1, \bar{v}_4, 0.73) \} \). We next select \(u_3 \) in \(\bar{u}_1, \bar{v}_1 \) to expand the search space because it has the lowest estimated \(pss \) of 0.86, and we add the path \(\bar{u}_1, \bar{v}_1 \) to the priority queue \(q \) as \((\bar{u}_3, \bar{v}_3, 0.74) \). However, we cannot return \(\bar{u}_3, \bar{v}_3 \) as the top-1 match because we still have \((\bar{u}_1, \bar{v}_1, 0.81) \) in \(q \). From \(\bar{u}_3, \bar{v}_3 \), we may find a better match with \(pss \) of 0.81 > 0.74. Hence, we continue to expand the search space from \(u_2, u_5, \) until \(u_1 \) is detected. Finally, we have \(q = \{ (\bar{u}_1, \bar{v}_1, 0.75), (\bar{u}_1, \bar{v}_4, 0.74), (\bar{u}_1, \bar{v}_3, 0.73), (\bar{u}_1, \bar{v}_4, 0.73) \} \), and \(\bar{u}_1, \bar{v}_1 \) is the top-1 match, while the potential matches from \(\bar{u}_2, \bar{u}_3, \bar{u}_4 \) can be safely pruned. This is because the upper bound of \(pss \) for \(\bar{u}_1, \bar{v}_1 \) is smaller than the \(pss \) of the top-1 match.

Theorem 2: Our A* semantic search ensures that the sub-query graph match \(\bar{u}' = u_i \) with the greatest \(pss \) can be found.

Proof: Suppose that the returned \(\bar{u}' = u_i \) is not the best match, then we have \(\bar{v} \leq \psi_{\text{opt}} \), where \(\bar{v} \) and \(\psi_{\text{opt}} \) are the \(pss \) of \(\bar{u}' = u_i \) and the best match, respectively. Since A* semantic search starts from \(u_i \) and all its neighbours are considered in the priority queue \(q \) for further expansion, then \(q \) must contain one partial path \(\langle \bar{u}', \bar{v}_i \rangle \) that belongs to the best match.

According to Theorem 1, we have \(\bar{v} \geq \psi_{\text{opt}} \). Hence, our A* semantic search will continue to expand the search space from \(u_i \) (line 3 in Algorithm 1) rather than returning the non-optimal match \(\bar{u}' = u_i \).

Complexity. The time consumption of our A* semantic search is dominated by the search space expansion. Given a partial path \(\bar{u}' = u_i \), we expand the search space from the node \(u_i \) as follows: (1) construct a new partial path \(\bar{u}' = u_i \cup u_i \) for each neighbour node \(u_i \) of \(u_i \), and (2) update the priority queue \(q \) with each \((\bar{u}' = u_i, \bar{v}_i) \). We use \(V^* \) to denote all detected nodes in step (1), then the time complexity is \(O(|V^*| \log |V^*|) \), where \(|V^*| \) is the time for the update of max-heap \(q \).

Remarks. (1) We implement the graph querying in a multi-threaded manner (one thread for each \(g_i \in G_Q \)). (2) In general, we usually need more than \(k \) matches collected for each \(g_i \) to ensure that \(k \) final matches can be assembled for \(G_Q \).

C. Final Matches Assembly

We employ the Threshold Algorithm (TA) [20] based method to efficiently assemble the top-k matches for \(G_Q \).

Core idea of assembly. Given the match sets \(\{M_i\} \) for all sub-query graphs \(\{g_i\} \), the TA-based assembly follows three steps. (1) It accesses all \(M_i \) in descending order of the match’s \(pss \). Since \(M_i \) is a max-heap, we pop the best match in \(M_i \) at each access. (2) It joins the detected matches with the same pivot node match \(u^p \) to generate a final match \(f_m(u^p) \), and computes its upper and lower bound on match score, denoted by \(S_m(u^p) \) and \(\tilde{S}_m(u^p) \), respectively. (3) It terminates early if \(k \) final matches are found, for which the smallest \(S_m(u^p) \) is larger than other final matches’ greatest \(\tilde{S}_m(u^p) \).

We next introduce how to compute \(\tilde{S}_m(u^p) \) and \(S_m(u^p) \) in the TA-based assembly, then we prove that the top-k final matches can be returned through the TA-based assembly. According to Eq. 2, the match score \(S_m(u^p) \) of a final match \(f_m(u^p) \) is computed by aggregating the \(pss \) of the matches that contain the same pivot node match \(u^p \), from each \(M_i \). Intuitively, if we know the \(pss \) bounds \(\bar{v} \) and \(\bar{v} \) of such a match from each \(M_i \), then we can compute the bounds of match score during the TA-based assembly as follows.

\[
\tilde{S}_m(u^p) = \sum_{i=1}^{M} \bar{v}, \quad S_m(u^p) = \sum_{i=1}^{M} \bar{v}
\]
is the \(pss \) of the current accessed match in \(M_i \). This is because the TA-based assembly accesses each \(M_i \) in the descending order of the match’s \(pss \). All the un-accessed matches from \(M_i \) must have \(\psi \leq \psi_{\text{cur}} \). If we find this match from \(M_i \), then we have \(\psi = \psi \). The upper bound \(\bar{\psi} \) is decreased as the TA-based assembly executes. Finally, \(S_m(u^p) = S_m(u^p) \), when the matches containing the same \(u^p \) are accessed from each \(M_i \).

Lower bound of \(S_m(u^p) \). At each access of the TA-based assembly, if the match that contains the same \(u^p \) is not accessed from \(M_i \) so far, then we have \(\psi = 0 \). This is because it is possible that \(M_i \) does not contain such a match. If we find this match from \(M_i \), then we have \(\psi = \psi \). The lower bound \(\psi \) is increased from 0 to \(\psi \) as the TA-based assembly executes. Finally, \(S_m(u^p) = S_m(u^p) \), when the matches containing the same \(u^p \) are accessed from each \(M_i \).

Termination check. We terminate the TA-based assembly if the top-\(k \) final matches are found. Specifically, (1) we sort the final matches in descending order of \(S_m(u^p) \), (2) we select the \(k \)-th largest \(S_m(u^p) \) as the lower bound of the top-\(k \) match score, denoted as \(L \), (3) we select the greatest \(S_m(u^p) \) among other final matches as their upper bound on match score, denoted as \(U \), and (4) we terminate the assembly if \(L \geq U \).

Theorem 3: The TA-based assembly can obtain the top-\(k \) final matches, when \(L \geq U \) holds.

Proof: Since the lower bound \(\psi \) increases from 0 to the exact \(pss \) as the TA-based assembly processes, the lower bound of the top-\(k \) match score \(L \) is also increased (Eq. 8). Similar to \(L, U \) is decreased because the upper bound \(\bar{\psi} \) decreases from \(\psi_{\text{cur}} \) to the exact \(pss \) as the TA-based assembly processes. Hence, if \(L \geq U \) holds at the \(r \)-th access of the TA-based assembly, then it will hold for all \(r' > r \) accesses. Therefore, the TA-based assembly can terminate safely and return the top-\(k \) final matches when \(L \geq U \) holds.

Complexity. In the worst case, all the matches from each match set \(M_i \) should be accessed to find the top-\(k \) final matches. So, the time complexity of the TA-based assembly in the worst case is \(O(\sum_i(|M_i|)) \). In Section VII-B, we show the impact of the TA-based assembly on the performance.

VI. Approximate Optimization

In this section, we introduce an approximate optimization on the semantic-guided search to enable a trade-off between accuracy and the system response time (SRT) within a user-specified time bound \(T \). In the original A* semantic search, we will continuously check the priority queue \(q \) until no partial paths in \(q \) having the greater estimated \(pss \) than the explored matches’ exact \(pss \). This operation ensures that the output \(k \) matches are globally optimal, but it also increases the SRT because the user cannot view the results before it terminates. Intuitively, if we can output the non-optimal matches earlier (within \(T \)), then the SRT could be reduced. As more time is given, the non-optimal matches can be refined incrementally.

Core idea of the approximate optimization. Given a user-specific time bound \(T \), the approximate optimization is illustrated in Figure 5. (1) We collect the early explored non-optimal matches of each sub-query graph \(g_i \), to generate a non-optimal match set \(\hat{M}_i \). (2) We estimate the possible overall time of assembling \(\{M_i\} \) to form the approximate final match set \(\hat{M} \), denoted by \(\hat{T} \). (3) We decide to assemble \(\hat{M} \), if \(\hat{T} \geq T \cdot r\% \) is reached. The value of \(T \cdot r\% \) is an alert time threshold to indicate a level beyond which there is a risk of failing to return \(\hat{M} \) within \(T \). Moreover, we ensure that \(\hat{M} \) can be incrementally improved when more time is given. Two key differences between this optimization and the original A* semantic search (Algorithm 1) are provided as follows:

- We collect each early explored match to the non-optimal match set \(\hat{M}_i \) in the step of search space expansion (lines 11-12 in Algorithm 2).
- We change the termination condition from top-\(k \) matches check to execution time check (lines 13-15 in Algorithm 2).

Specifically, we add a time estimation for the whole graph querying (Algorithm 3) to ensure that the approximate final match set \(\hat{M} \) can be returned within \(T \).

Non-optimal match set \(\hat{M}_i \). In Algorithm 2, we update \(\hat{M}_i \) once a match is explored no matter if it is optimal. Obviously, \(\hat{M}_i \) will be incrementally refined as more time is given.

Lemma 2: The non-optimal match set \(\hat{M}_i \) can be incrementally refined and eventually be equal to the globally optimal match set \(M_i \), if sufficient time is given.

Proof: Suppose that we have \(\hat{M}_i \cap M_i = \emptyset \) at time \(t \), which means at least \(|M_i| \) better matches are not explored in \(\hat{M}_i \) so far. Hence, we have at least \(|M_i| \) partial paths in the priority queue \(q \) that have the greater estimated \(pss \) \(\hat{\psi} \) than the \(pss \) of all matches in \(\hat{M}_i \). According to Algorithm 2, we will select the one with the greatest \(\hat{\psi} \) from \(q \) to expand the search space if \(\hat{T} < T \cdot r\% \) holds. Once a match that belongs to \(M_i \) is explored, we will collect it to \(\hat{M}_i \), then we have \(|M_i| \cap \hat{M}_i = 1 \). Theoretically, if sufficient time \(T \) is given, then Algorithm 2 will keep running until the best \(M_i \) matches are explored.

Execution time check. The overall time for querying a query graph \(G_Q \) is dominated by the time of A* semantic search (\(T_{A*} \)) for each sub-query graph \(g_i \) and the time of TA-based assembly (\(T_{TA} \)). Each \(g_i \) is processed as an independent thread, so we use \(\max\{T_{A*}\} \) to denote the time of A* semantic search. Given a user-specific time bound \(T \), we want to obtain an approximate final match set \(\hat{M} \) with the time \(\max\{T_{A*}\} + T_{TA} \leq T \). To this end, we estimate the overall time \(\hat{T} \) of our approximate optimization in Algorithm 3. (1) The A* semantic search of each sub-query graph \(g_i \) reports a pair of \(\{T_{A*}, |M_i|\} \) for time estimation (line 1), where \(T_{A*} \) is the current running time of each \(g_i \) and \(|M_i| \) is the number of explored matches so far. (2) We use all the \(|M_i| \) to estimate \(T_{TA} \) (line 2). In the worst case, TA-based assembly needs to access all matches in \(M_i \), so we use \(\sum |M_i| \cdot t \) as the estimated \(T_{TA} \), where \(t \) is an empirical time for processing one match of \(M_i \) in the TA-based assembly. (3) We decide to launch the TA-based assembly if \(\max\{T_{A*}\} + T_{TA} \geq T \cdot r\% \) (line 3).
Algorithm 2: Time bounded A* semantic search

Data: sub-query graph g_i
Result: non-optimal match set M_i

1. $\psi_i \in \phi_i(v_i) = (u_i, \psi_i), \text{visited}(u_i), M_i = \emptyset$
2. while $q \neq \emptyset$ do
 3. $\langle \psi_i, \psi_i \rangle = \operatorname{pop_max}(q)$; // Next-hop selection
 4. for $u_i \in N(u_i)$ do // Search space expansion
 5. if visited.contains(u_i) then
 6. visited.add(u_i); $\psi_i \leftarrow \psi_i + u_i$;
 7. $\langle \psi_i, \psi_i \rangle = \text{espoEstimation}(\psi_i)$;
 8. if $\psi_i \geq \tau$ and $u_i \in \phi_i(v_i)$ then
 9. q.push(\langle u_i, ψ_i \rangle);
 10. if $\psi_i \geq \tau$ and $u_i \in \phi_i(v_i)$ then
 11. M_i.push(\langle u_i, ψ_i \rangle);
 12. update(T_A^*);
 13. if timeEstimate($T_A^*, |M_i|$) then // Execution time check
 14. break;
 15. return M_i;

Algorithm 3: timeEstimate($T_A^*, |M_i|$)

Data: (T_A^*, $|M_i|$) pair from each g_i

1. collect the pair of (T_A^*, $|M_i|$) from each g_i;
2. $T_A = \sum |M_i| \cdot t, T = \max(T_A) + T_A$;
3. if $T \geq \tau \cdot \gamma$ then
 4. return true;
5. return false;

Approximate M assembly. Given a set of non-optimal match sets $\{M_i\}$, we conduct a TA-based assembly to generate the approximate final match set M. In this paper, we use the Jaccard similarity between M and the globally optimal final match set M to quantify their approximation degree according to Eq. 9:

$$\text{Jad}(\hat{M}, M) = \frac{|M \cap \hat{M}|}{|M \cup \hat{M}|} = \frac{k \gamma}{2k - k \gamma}$$

where k is the size of \hat{M}, and k is the size of $|M \cap \hat{M}|$.

Theorem 4: Our approximate optimization can incrementally refine the approximate final match set M and finally obtain the globally optimal M, if sufficient time is given.

Proof: Suppose that we have a non-optimal match set M_i at time t. According to Lemma 2, M_i can be refined to M_i' at time t' ($t' > t$). Hence, the approximate final match set M' assembled from $\{M_i\}$ is better than M assembled from $\{M_i\}$, which means $k' \gamma \geq k \gamma$. According to Eq. 9, Jad(M', M) \geq Jad(M, M) holds if $k' \gamma \geq k \gamma$. Moreover, if sufficient time T is given, then we have $M_i = M_i$ (Lemma 2). Hence, the global optimal final match set M can be assembled from $\{M_i\}$ when sufficient time T is given.\square

VII. EXPERIMENTAL STUDY

We present experiment results to evaluate (1) effectiveness and efficiency, (2) analysis via user-study, (3) impact of query graph shapes and sizes, (4) robustness with noise, (5) scalability of our algorithms, and (6) parameter sensitivity. Due to limitation of space, we refer the reader to full version (https://arxiv.org/pdf/1910.06584.pdf) for the details of (6). The source code of this paper can be obtained from https://github.com/hq1996/Semantic-guided-search.

A. Experimental Setup

Datasets. We used three real-world datasets as shown in Table II. (1) DBpedia [1] is an open-domain knowledge base, which is constructed from Wikipedia. We used the same DBpedia dataset as [14] (authors shared it with us). (2) Freebase [3] is a knowledge base mainly composed by communities. Since we assume that each entity has a name, we used a Freebase-Wikipedia mapping file [40] to filter 5.7M entities, each entity has a name from Wikipedia. (3) YAGO2 [2] is a knowledge base with information from the Wikipedia, WordNet and GeoNames. In this paper, we only used the CORE portion of Yago (excluding information from GeoName) as our dataset.

Query workload. We used four query workloads to construct the query graphs. (1) QALD-4 [15] is a benchmark for DBpedia. It provides both SPARQL expression and answers for each query. A SPARQL expression may involve multiple UNION operators, which correspond to different predefined schemas in DBpedia. We selected only one UNION operator to construct the query graph. It is desired to find more answers without considering all UNION operators. (2) WebQuestions [41] is a benchmark for Freebase. It provides a set of questions, denoted by a quadruple $\langle q\text{Text}, \text{freebaseKey}, \text{relPaths}, \text{answers} \rangle$. We took the entities and relations from freebaseKey and relPaths to form query graphs. (3) RDF-3X [42] contains queries for YAGO2 dataset. It provides SPARQL expressions, but does not provide the answers. To obtain the validation set, we imported YAGO2 to the graph database Neo4j and executed the queries through the sparrow-plugin. (4) Synthetic graphs were generated to evaluate the effect of query graph shapes and sizes on our approach. According to [19], chain, star, tree, cycle, and flower are the commonly used graph shapes, so we generated query graphs with these shapes by extracting subgraphs from our datasets. Similar to [19], we took the number of edges (i.e., triples) in the query graph to measure the query size.

Metrics. We adopted two classical metrics to measure the effectiveness. Precision (P) is the ratio of correctly discovered answers over all discovered top-k answers. Recall (R) is the ratio of correctly discovered answers over all correct answers. In addition, we also employed F1-measure to combine the precision and recall as $F1 = \frac{2 \cdot P \cdot R}{P + R}$.

Comparing methods. We compared our approach with four recent works on knowledge graph search: S4 [14], p-horn [17], GraB [10], and QGA [12]. S4 is a semantic pattern based solution. p-horn and GraB support structurally edge-to-path mapping. QGA is a keyword based approach.

There are two versions of our approach: (1) SGQ (semantic-guided query) is the implementation of A* semantic search and TA assembly in Section V. (2) TBO (time-bounded query) is the approximate optimization in Section VI. We set the default pss threshold $\tau = 0.8$ and user desired path length $n = 4$. We used the TransE [43] embedding model to obtain the predicate semantic space. All the experiments were conducted on a 2.1GHZ, 64GB memory AMD-6272 server with a single core.
B. Effectiveness and Efficiency Evaluation

Effectiveness. In this test, we set the time bound of TBQ as 90% of the execution time of SQQ (TBQ-0.9). Tables III-V (Precision, Recall, and F1-measure) show the effectiveness results over different top-k. For all datasets, our approach outperforms the others. This is because we can find the semantically similar answers following the guidance of the predicate semantics. Table VI shows some schemas of returned answers for Q117 we generated 30 random pairs of answers (two answers from the same pair have different schemas), and presented each pair.

TABLE VI. The schemas of returned answers for Q117

<table>
<thead>
<tr>
<th>Answers' schemas of GQ2:</th>
<th>(Automobile) Assembly</th>
<th>Germany(Country)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobile-assembly-Germany</td>
<td>Automobile-assembly-City-Germany</td>
<td>Automobile-assembly-Manufacturer-Company-location-Germany</td>
</tr>
<tr>
<td>Automobile-assembly-Company-location-Germany</td>
<td>Automobile-assembly-Company-location-Country-Germany</td>
<td>Automobile-design-Company-Company-location-Germany</td>
</tr>
</tbody>
</table>

TABLE VII. Average time (ms) of each component (top-k=100)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBpedia</td>
<td>8.50</td>
<td>6.59</td>
<td>157.13</td>
<td>58.11</td>
</tr>
<tr>
<td>Yago2</td>
<td>7.05</td>
<td>9.46</td>
<td>121.30</td>
<td>106.91</td>
</tr>
</tbody>
</table>

(a) Effectiveness for DBpedia, (b) Effectiveness for Yago2

C. User Study

Since our approach returns the top-k answers to the user, we want to know if users are satisfied with the high-ranking answers (even though the answers are already in the validation set). We expect that an answer that is more familiar to the user must have a higher rank. Therefore, we conducted a user study through Baidu Data CrowdSourcing Platform (https://zhongbao.baidu.com/?language=en) to evaluate the correlation between top-k answers of our approach (SQQ) and user’s preference, measured by Pearson Correlation Coefficient (PCC). We did this test according to the steps in [27]. We selected 20 queries (6, 12, and 2 queries from QALD-4, WebQuestions, and RDF-3x, respectively) for this user study. For each query, we generated 30 random pairs of answers (two answers from the same pair have different schemas), and presented each pair.
Fig. 7: Effectiveness vs. Noise (DBpedia, top-k=100)

TABLE VIII. An example of answer pairs for user study (Q117)

<table>
<thead>
<tr>
<th>Answer1</th>
<th>SGQ Rank</th>
<th>User</th>
<th>Answer2</th>
<th>SGQ Rank</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opel Super 6</td>
<td>62</td>
<td></td>
<td>BMW_320</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Volkswagen_Passat</td>
<td>72</td>
<td></td>
<td>30_PS</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

TABLE IX. FCC results (DBpedia (D), Freebase (F), YAGO2 (Y))

<table>
<thead>
<tr>
<th>Query</th>
<th>FCC</th>
<th>Query</th>
<th>FCC</th>
<th>Query</th>
<th>FCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0.86</td>
<td>I2</td>
<td>0.74</td>
<td>J5</td>
<td>0.74</td>
</tr>
<tr>
<td>D2</td>
<td>0.56</td>
<td>I1</td>
<td>0.74</td>
<td>J4</td>
<td>0.74</td>
</tr>
<tr>
<td>D3</td>
<td>0.61</td>
<td>I2</td>
<td>0.74</td>
<td>J1</td>
<td>0.74</td>
</tr>
<tr>
<td>D4</td>
<td>0.57</td>
<td>F1</td>
<td>0.74</td>
<td>J2</td>
<td>0.74</td>
</tr>
<tr>
<td>D5</td>
<td>0.73</td>
<td>I4</td>
<td>0.74</td>
<td>J3</td>
<td>0.74</td>
</tr>
</tbody>
</table>

TABLE X. Response time (ms) vs. Noise (DBpedia, top-k=100)

<table>
<thead>
<tr>
<th>Noise type</th>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node noise</td>
<td>102.2</td>
<td>110.2</td>
<td>114.6</td>
<td>117.3</td>
<td>126.7</td>
</tr>
<tr>
<td>Edge noise</td>
<td>110.2</td>
<td>116.3</td>
<td>118.7</td>
<td>118.3</td>
<td>126.8</td>
</tr>
</tbody>
</table>

C1 takes only 12.47 ms on average for the large flower-shaped query graphs. Even for a quite large flower-shaped query (with 10 edges), it takes only 18.79 ms. Moreover, 90.76% of the query graphs have at most 6 edges [19], so we can say that C1 is scalable to the query size in practice. While for TA-based assembly (C4), the time complexity in the worst case is $O(\sum_{i} |M_{i}|)$, which is dominated by the number of sub-query graphs and $|M_{i}|$. If we want to find the top-k matches (e.g., k=100), the $|M_{i}|$ is usually the same order of magnitude as k. Besides, the number of sub-query graphs is usually small in practice (e.g., 4.62 on average for the large flower-shaped query graphs). So, the size of $\sum_{i} |M_{i}|$ is not large in practice. Hence, we conclude that C4 is also scalable to the query size.

E. Robustness with respect to Noise

Since we assume that different users may construct different query graphs to represent the similar query intention, we investigate the impact of varying query graphs on the performance of SGQ. To construct the semantically similar but structurally different graphs, we systematically considered node noise and edge noise. (1) Node noise. We added the node noise by changing the node name or type with a randomly selected synonym or abbreviation. (2) Edge noise. We added the edge noise by replacing the predicate with one of its top-10 semantically similar predicates in the predicate semantic space. E. (3) Noise percentage is defined as the fraction of query graphs selected to add noise (varied from 10% to 40%). Figure 7 shows the results for DBpedia (top-k=100): (1) All effectiveness metrics decrease as the noise ratio increases, (2) SGQ is more sensitive to edge noise. This is because SGQ may misunderstand the query intention if an inappropriate predicate is given. For example, if we use designer to replace assemble in query Q117, then Automobiles designed by Germans would be superior to Automobiles assembled in Germany. Furthermore, Table X shows that the response time increases slightly with the growth of noise and it is sensitive to edge noise too.

F. Scalability

This experiment studies the scalability of SGQ. We extracted two subgraphs G_1 and G_2 from DBpedia, e.g., G_1 has 3M nodes and 13.6M edges. Table XII shows the response time of SGQ for top-k={80,100,120} and the knowledge graph embedding time and memory usage. Observe that the time of SGQ increases as the graph size increases, but the change is not significant, which means that SGQ is scalable to the data size. This is because our approach can prune the unpromising candidates effectively for the different scale of the dataset.
Moreover, our offline knowledge graph embedding time and memory usage are modest, e.g., within 6.6 hours and 8.8 GB.

VIII. Conclusions

In this paper, we proposed a semantic-guided and response-time-bounded graph query to search knowledge graphs effectively and efficiently. We leveraged a knowledge graph embedding model to build the semantic graph. Then we presented an A* semantic search to find the top-k semantically similar matches from the semantic graph according to the path semantic similarity. We optimized the A* semantic search to trade off the effectiveness and efficiency within a user-specific time bound, thereby improving the system response time. The experimental results on real datasets confirm the effectiveness and efficiency of our approach.

ACKNOWLEDGMENT

The second author Arijit Khan is supported by MOE Tier-1 grant 2019-T1-002-059. This work is also supported by the NSFC under grants 61602410 and 61702096; the NSF of Jiangsu under grant 2019-Z-002-059. This work is also supported by the NSFC under grants 61602410 and 61702096; the NSF of Jiangsu under grant BK20170689.

REFERENCES

