CHEMICAL TECHNOLOGIES FOR INDUSTRIAL WASTEWATER - ADVANCE OXIDATION PROCESS

Project Team

Research Team: Prof Hu Xiao, Prof Lim Teik Thye, Dr Rona Goei, Dr Wang Penghua

Removal of organic (or inorganic) materials in water and wastewater by oxidation through non-selective attack by radical species.

Advantages
- Effective for a wide range of operating temperatures and pH values
- Excellent bactericidal and sporidical action
- Fast and non-selective
- Produce small amount of no THM or other DBP (affected by pH, alkalinity, and nature of the organic materials)
- Does not produce dissolved and suspended solids
- Control color, taste, and odor
- Clean residual \rightarrow O_2

Particulates Removal

Applications & Advantages

- Pre-treatment of Wastewater Stream
 - Reduction of overall organic content (COD)
 - Increase of biodegradability of recalcitrant organics (BOD)
 - Destruction (mineralization) of specific pollutants
 - Sludge treatment and conditioning
- Post-treatment of Wastewater Stream
 - Wastewater polishing
 - Reduction of color and odor
 - Disinfection
- Point of Application
 - Domestic wastewater treatment plant
 - Industrial wastewater treatment plant
 - Sludge treatment
 - Groundwater remediation

Novelty

2. Catalytic microreactors dispersed within the membrane pores, providing extended degradation of micropollutants that pass through the membrane.
3. Hybrid membrane reactor system with a smaller footprint.

Catalytic Wet Air Oxidation (CWAO)

Advantages
- Oxidizes organic/inorganic matters by oxygen or air
- CWAO produces no NOx, SO2, and HCI
- With noble metal catalyst (Pt, Pd, Ru, etc.), CWAO is able to oxidize refractory acetic acid/ammonia while operating at a lower temperature and pressure
- Pre-oxidation to be followed by biological processes
- Enhances biodegradability
- Effective for highly concentrated wastewater (COD ~ 100,000 mg/L)

IP List

www.newri.ntu.edu.sg