

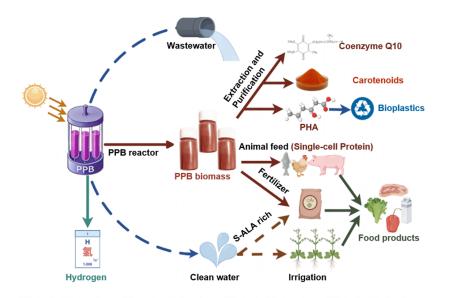
## CO<sub>2</sub> CAPTURE VIA NOVEL BIOPROCESS: PURPLE PHOTOTROPHIC BACTERIA (PPB) FOR EMISSION CONTROL AND FOOD SECURITY

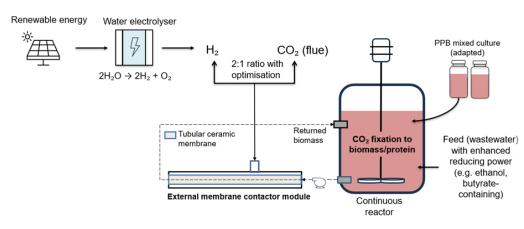
## **Abstract**

This project aims to develop a sustainable bioprocess that captures carbon dioxide (CO<sub>2</sub>) from low-concentration emission streams using purple phototrophic bacteria (PPB) and converts it into valuable biomass and bioproducts. The approach leverages PPB's metabolic diversity and ability to utilize multiple electron donors. We hypothesize that by optimizing electron donor availability and growth conditions, PPB can significantly enhance CO<sub>2</sub> fixation into biomass, and that supplying external hydrogen will further boost carbon capture and single-cell protein (SCP) yield. The key objectives and hypotheses are:

## (1) Optimize PPB growth and CO<sub>2</sub> fixation.

Objective: Determine the optimal combinations of electron donor sources (e.g.,  $H_2$  gas, ethanol, butyrate) and environmental factors (light intensity,  $CO_2/H_2$  feed ratio, nutrient levels) to maximize PPB growth and  $CO_2$  fixation.


Hypothesis: PPB's versatile metabolism allows it to grow under autotrophic, mixotrophic, and heterotrophic conditions; by tuning electron donor supply and conditions, we can enhance the Calvin–Benson–Bassham (CBB) cycle activity and carbon assimilation.


(2) Integrate novel membrane contactor for enhanced carbon capture and SCP production.

Objective: Incorporate advanced gas delivery module to improve H<sub>2</sub> availability and uptake in PPB cultivation system.

Hypothesis: Incorporating a dedicated  $H_2$  gas contactor (e.g. a membrane diffuser) to the bioreactor will greatly improve hydrogen mass transfer and diffusion into the culture, overcoming gas–liquid transfer limitations. This will allow PPB to utilize  $H_2$  more efficiently as an electron donor, thereby enhancing  $CO_2$  fixation rates and increasing the yield of SCP and value-added products.

Together, these innovations will enable an efficient conversion of dilute CO<sub>2</sub> sources (eg. flue gas) into microbial biomass, demonstrating a hybrid solar-biological route to mitigate emissions while producing protein-rich feed.





Schematic of the proposed integrated lab-scale PPB system

Versatility of PPB metabolic pathways and different end products.



PI Prof Zhou Yan