

Marine Methanol Fuel Specification and Engine Technologies

Ms Clara Ng Kay Leng Research Associate Maritime Energy & Sustainable Development (MESD) Centre of Excellence, Nanyang Technological University

MESD Seminar 2023, 1st Dec 2023

Agenda

2

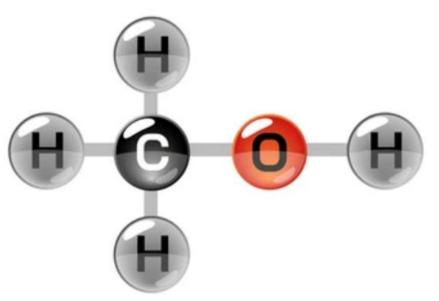
Methanol as a Marine Fuel

Methanol Combustion Properties

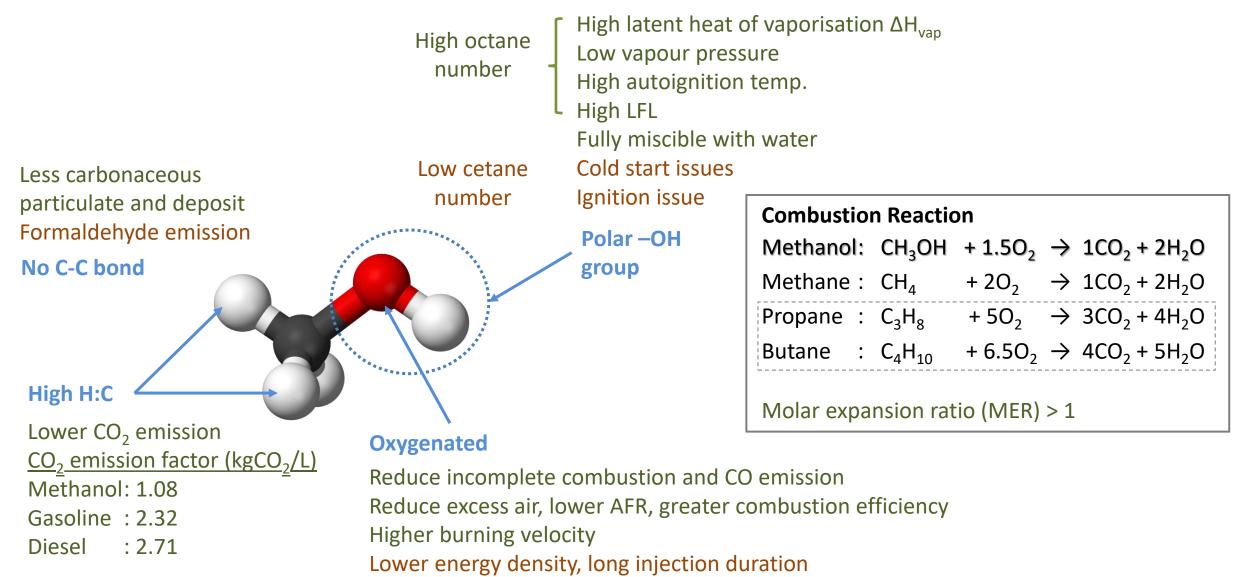
Methanol Fuel Quality

Methanol Purity from Direct and Indirect Production Pathways Energy Converters Fuel Requirements and Specifications Existing Standards and Specifications Recommendations

Methanol Engine Technology and Development Progress


Overview of ignition strategies

Combustion Concepts for Methanol Diesel (compression-ignition) Engines


Current Development Status

1. Methanol as a Marine Fuel

Methanol Combustion Properties

1. Methanol as a Marine Fuel

1. Methanol as a Marine Fuel

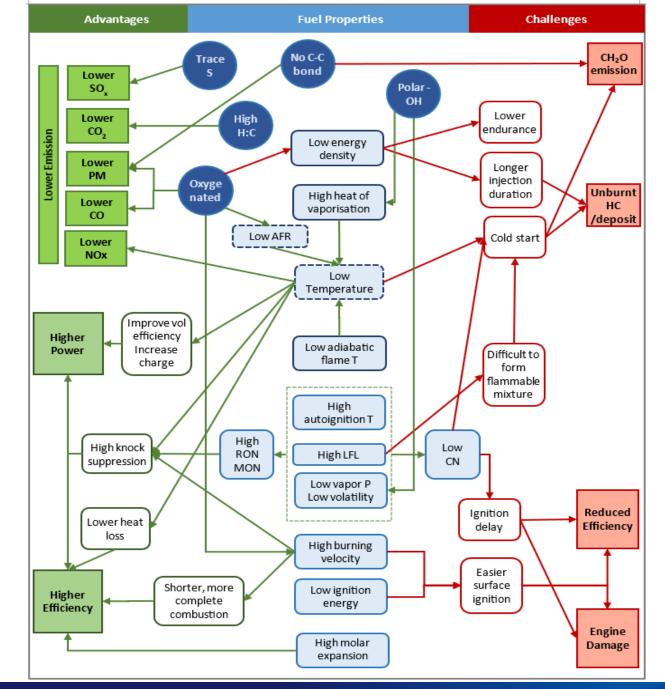
Fuel management-related properties

Liquid fuel at ambient temperature

Low density, viscosity, surface tension

Easy to atomise, no pre-heating required, no cold-flow issue

Low lubricity

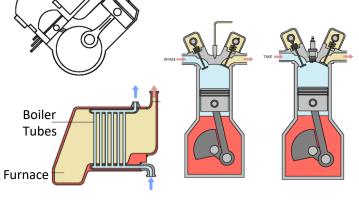

Accelerate engine wear and tear

Low flash point, wide flammability range Safety issues

Corrosive

5

Corrosion issues, particularly with presence of water

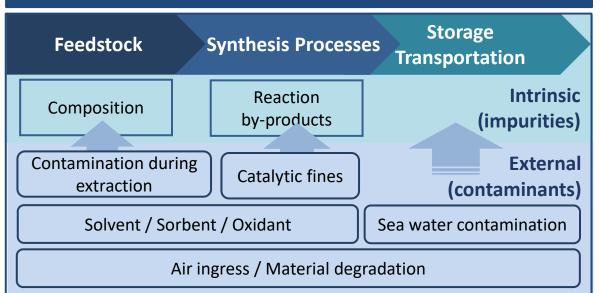

🗱 NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

Methanol Purity from Direct and Indirect Production Pathways Energy Converters Fuel Requirements (Marine Engines & Fuel Cells) Chemical and Industrial Standards Standards for Motor vehicles Standards for Marine Application Recommendations

Energy Converters Requirements

External	Ir
Combustion	С
Boiler	S
Gas Turbine	(0
Steam Engine	С
Stirling Engine	١g
	/-

Internal Combustion Spark Ignition (Gas Engine) Combustion Ignition (Diesel Engine)


Fuel Cells

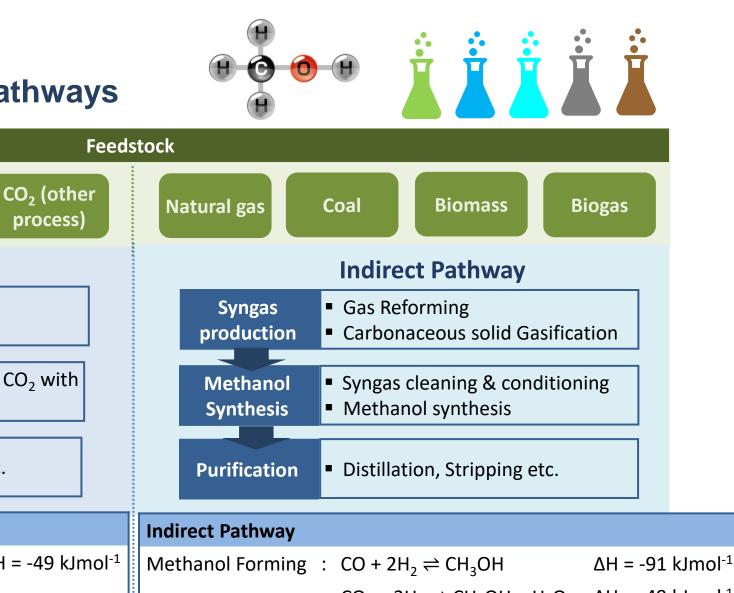
PFM

SOFC

DMFC

Methanol Fuel Purity

Existing Specifications & Standards


- Chemical Grade
- Industrial Grade
- Motor Vehicle
- Fuel Cell

- Conventional Marine Fuel
- Methanol Engine Manufacturer Specifications
- Hydrogen for Fuel Cells

2. Methanol Fuel Quality - Feedstock and Production Pathways

CO₂

(air)

Direct Pathway

 CO_2

(flue gas)

CO_2 , H_2 Generation	Carbon captureElectrolysis of water
Methanol Synthesis	 Direct hydrogenation of CO₂ with H₂

Purification Distillation, Stripping etc.

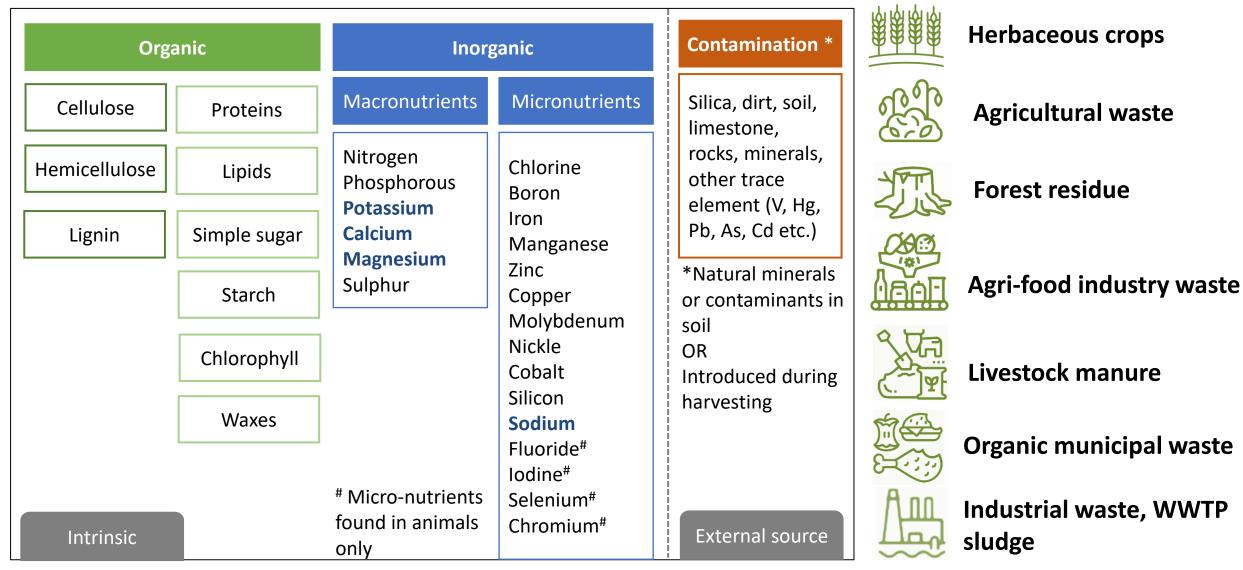
Direct Pathway

8

	Indirect Pa

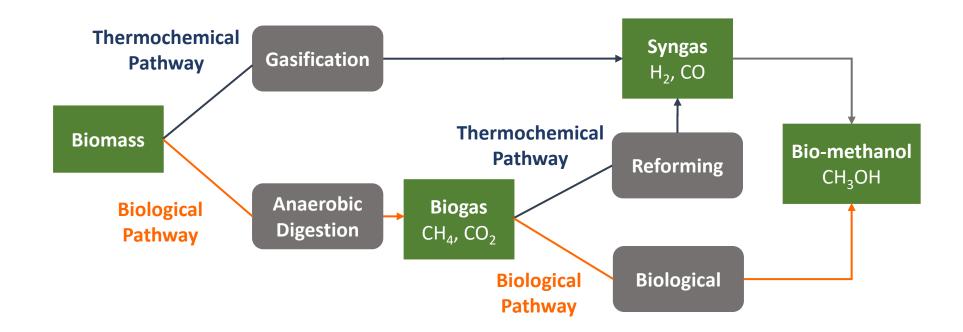
process)

Methanol Forming : $CO_2 + 3H_2 \rightleftharpoons$	$\Delta H = -49 \text{ kJmol}^{-1}$	Methanol Forming	: $CO + 2H_2 \rightleftharpoons CH_3OH$	ΔH = -91 kJmol ⁻¹
			: $CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$	ΔH = -49 kJmol ⁻¹
Water-Gas-Shift : $CO_2 + H_2 \rightleftharpoons C$	$\Delta H = -41 \text{ kJmol}^{-1}$	Water-Gas-Shift	: $CO_2 + H_2 \rightleftharpoons CO + H_2O$	ΔH = -41 kJmol ⁻¹
			: $CO + H_2O \rightleftharpoons CO_2 + H_2$	ΔH = +41 kJmol ⁻¹


 H_2

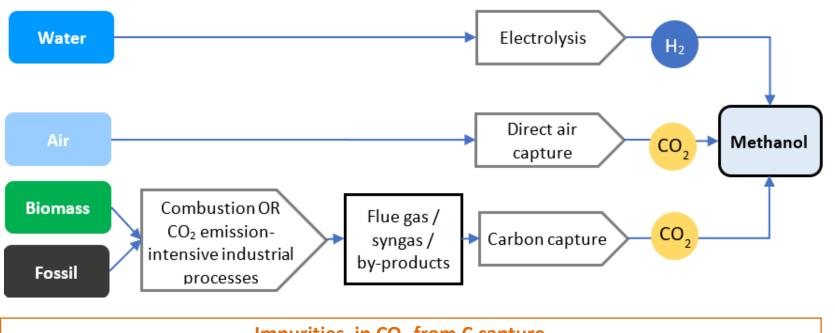
(water)

- Biomass Feedstock



Woody biomass

MESD Centre of Excellence © 2022. Nanyang Technological University. All rights reserved.


2. Methanol Fuel Quality - Biomass Feedstock

SEA region

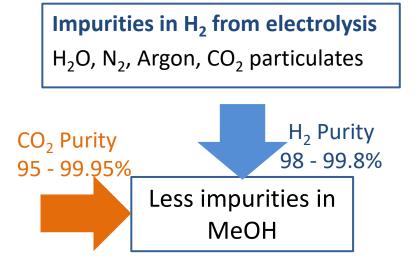
- Abundance forestry and agricultural resources (oil palm frond, empty fruit brunch and trunk, rice straw, sugarcane trash, rice husk, cassava stalk)
- Unutilised residues (2019) potential to produce 106.98 million tonnes of bio-methanol (≡ 2.13 EJ energy)
- Projection: 122.80 million tonnes in 2050 (27% of global maritime energy demand projected by DNV)
- Industrial waste and municipal waste potential in populated areas

- Direct Production Pathways

Direct hydrogenation of *pure* CO₂ and H₂ simplifies MeOH synthesis chemistry. Fewer reactions and by-products

Impurities in CO₂ from C capture

S, N, halogens, trace metals (Hg, Pb, Se, As) Alkali metals (Cl⁻, OH⁻, SO₄²⁻ of K and Na) for biomass


Complete oxidation Partial oxidation Oxidant / Air ingress

Process fluids

Fuel

11

Water, SO_x, NO_x, HCl, HF PM (ash, soot, PAH), Volatiles (H₂, $CH_{4}, C_{2}H_{6}, C_{3+}$ CO, H₂S, COS, NH₃, HCN O_2 , N_2 , Ar Glycol, amine, Selexol, Rectisol, NH₂, H₂O.

2. Methanol Fuel Quality - Methanol Purity

Bio-methanol

Higher tar in syngas

- Due to lower gasification temperature
- More complex syngas cleaning process (tar reforming)

Higher alkali and alkaline earth metals

- Catalyse formation of higher alcohols, ethers
- More complex distillation processes to remove by-products

E-methanol

Less by-products and impurities

Majority of impurities generated from MeOH synthesis due to high purity syngas / CO₂ & H₂ Crude methanol 96.8% (natural gas) 91.3-95% (woody biomass)

Final purity depends on energy intensive distillation process (15% of production cost)

2. Methanol Fuel Quality - Methanol Marine Engines Fuel Requirements

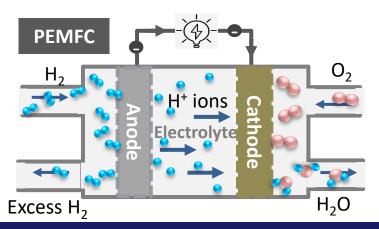
	WinGD	MAN	Wärtsilä	ABC	ScandiNAOS / Scania
Engine Type	DF, CI 2-stroke low speed	DF, CI 2-stroke low-speed	DF, CI 4-stroke medium-speed	DF, CI 4-stroke medium- speed	SF, CI 4-stroke high-speed
Pilot	N/A	5%	5 – 8%	30%	3% additives
MeOH	N/A	95%	92 – 95%	70%	97%
Purity	95%	95%	99.85%	N/A	99.85%
Concept	HP-DI	HP-DI	HP-DI	HCCI-DI or RCCI	HP-DI + ignition additives
MeOH Injection	N/A	HP-DI injector	HP-DI Twin (1 + 3	PFI	HP-DI
Pilot Injection	N/A	HP-DI injector	nozzles)	HP-DI	NIL
Injection Pressure	N/A	550 bar	600 bar	< 10 bar	N/A
NOx (Tier III)	SCR	SCR / water	SCR	SCR/oxi-cat	No post-treatment

Low flashpoint, corrosivity

- Double-walled tanks, piping
- Compatible material
- Safety devices, protocols and procedures, IGF Code (to be revised)

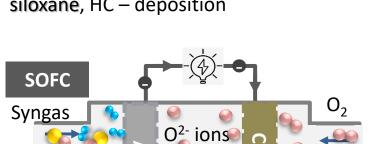
Low lubricity

 Lubrication additives (existing or additional)


Formaldehyde, NOx emissions

 Post-combustion treatment (oxidation catalysts, SRC)

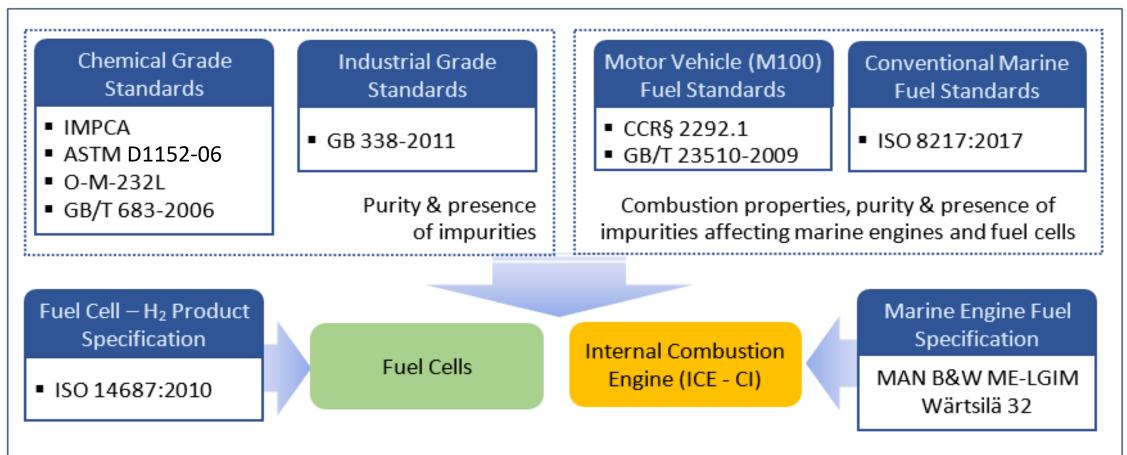
- Fuel Cells Fuel Requirements


	PEMFC	DMFC	SOFC	Impurities
Anode	Pt	Pt-Rd catalyst	Ni	 Block (deposition) or occupy active sites on
Electrolyte	Polymer	Polymer	Solid ceramic	catalyst (adsorption)
	membrane	membrane		 Damage or degrade electrode and electrolyte
Temperature	100 LT	60-130	800-100	,
(°C)	200 HT			 Block or deviate electrochemical reaction pathway
Fuel	H2	Methanol	HC to syngas	patriway
ISO 14687 Hydrog fuel (reformate) P	en and hydrogen-t EMFC	,	acetic acid & higher ald for active sites on catal	

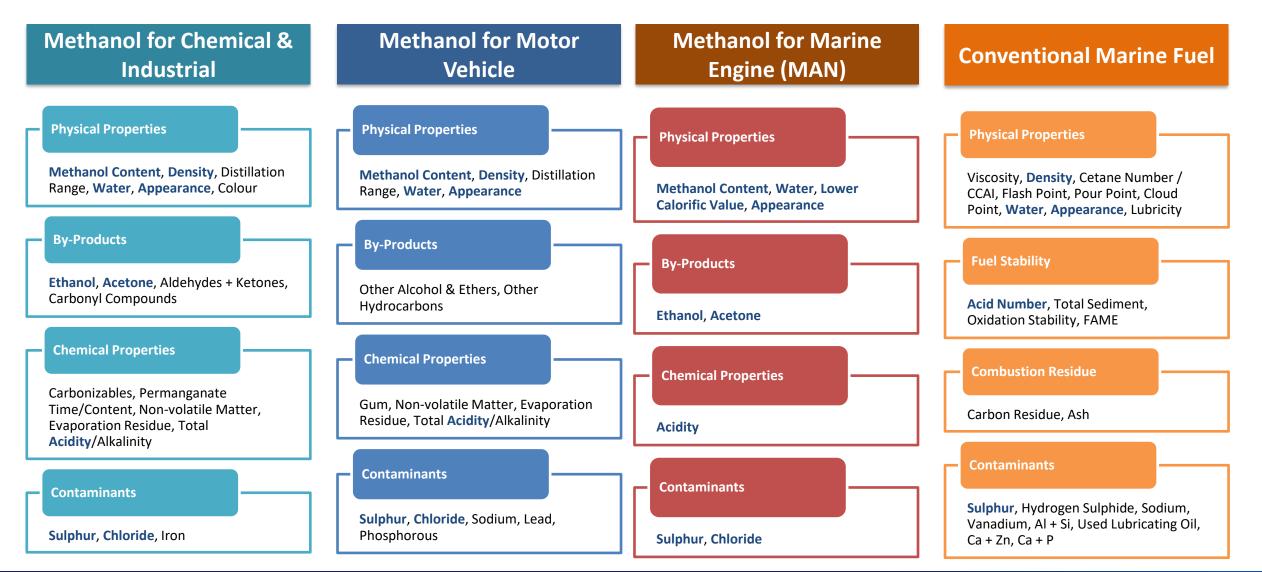
CO, NH₃, Cl⁻, S, HC, Na, K, Fe, HCHO

מכנועב סונבס טוו כמנמועסנ, ווווווטונ electrochemical reactions

DMFC MeOH H⁺ ions tho Electrolyte CO H₂O



14


Confidential

- Existing Standards & Specifications

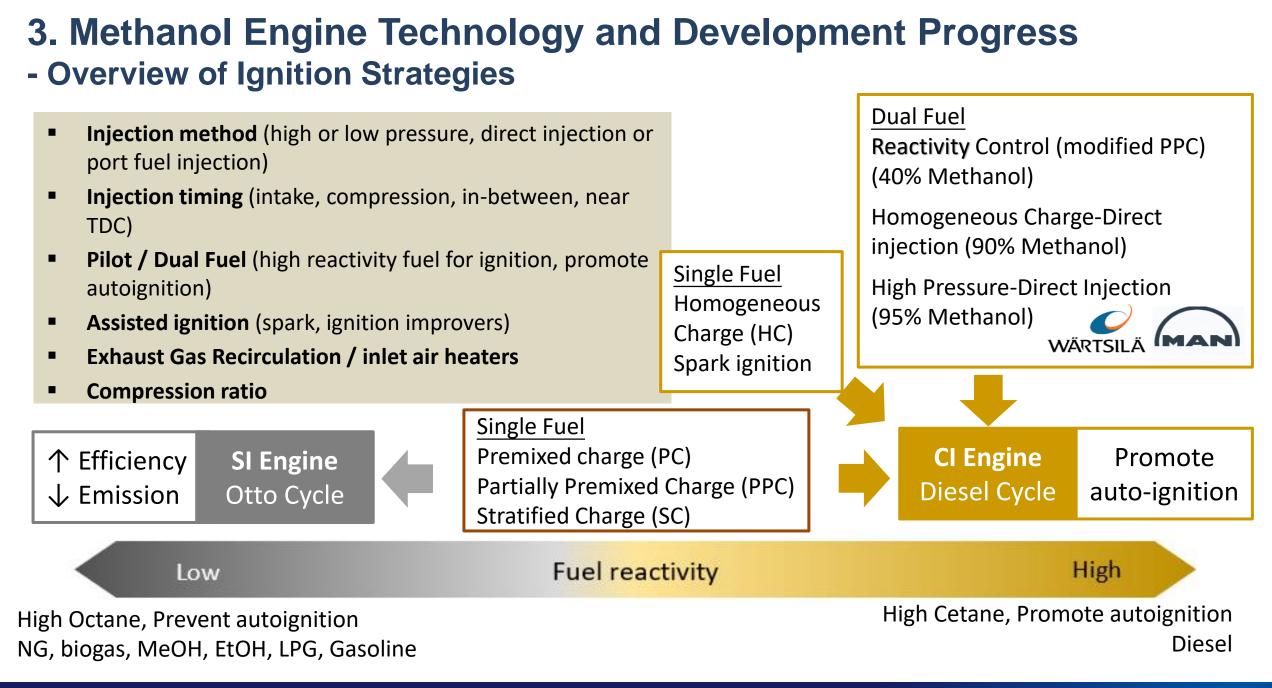
- Existing standards for chemical & industrial, gasoline-methanol fuel blends & pure methanol fuel in ground vehicles
- Currently <u>no specifications</u> on methanol as a marine fuel
- ISO/AWI 6583 Specifications of methanol as a fuel for marine application is <u>under development (committee stage)</u>

2. Methanol Fuel Quality- Comparison of fuel standards and specifications

16

MESD Centre of Excellence © 2022. Nanyang Technological University. All rights reserved.

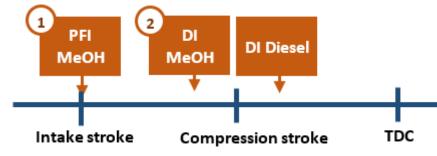
2. Methanol Fuel Quality - Proposed specifications & reportable parameters

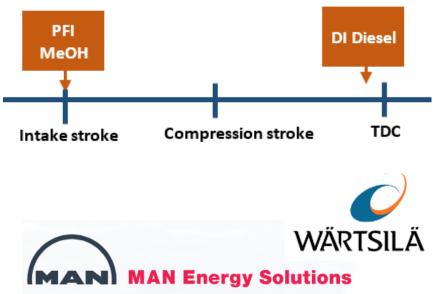

Physical Methanol Water Appearance Colour	*Changes with water content Quick purity assessment	Boiler & External Combustion Engine > 90% purity	Internal Combustion Engine > 95% purity	Fuel Cell Grade > 99.9% purity Besides ISO14687, CO, formaldehyde, formic acid,
Flash Point* Viscosity* Lubricity* Distillation range* Density*	Safety & operational Indicate purity	By-products Acetone Ethanol Other alcohol, ether Other hydrocarbons —	Combine as other alcohol, ether BETX contamination	siloxane and specific trace elements (K, Fe, B) may be required depending on manufacturers specifications.
Combustion Lower heating value*	Commercial settlement Engine efficiency	Total acidity Total particulates Inorganic	Contamination, degrad Wear & tear, plugging, corrosion indicator	ation
Carbon Tracing Fossil vs non-fossil	Identify renewable & low carbon methanol	Sulphur Sodium Chloride	 Regulatory Seawater contamination contribute to corrosivit 	,

17

MESD Centre of Excellence © 2022. Nanyang Technological University. All rights reserved.

Methanol Engine Technology and Development Progress


Overview of Ignition Strategies Combustion Concepts for Methanol CI Engines Current Status



	nol Engine Technology and Develop el CI Combustion Concepts	ment Progress
HCCI Homogenous Charge Compression Ignition	PFI or DI at intake. EGR. Compressing a homogenous charge (SI charge intake) to autoignition temperature (CI ignition process).	Fuel Intake stroke TDC
PCCI / PPCI Premixed Charge Compression Ignition	DI between HCCI and CI. Hybrid of HCCI and CI. EGR. Shorter mixing time, less homogenous combustion.	Fuel Compression stroke TDC
SCCI Stratified Charge Compression Ignition	 PFI for part of the fuel at intake, the rest DI at compression OR DI anytime between intake and compression Hybrid of HCCI and CI. Stratified combustion. Ignition at locally rich zone and proceed to locally leaner zones 	1 Fuel Fuel Fuel Fuel Fuel Fuel Fuel TDC
SICI Spark Ignition Combustion Ignition	PFI at intake. Hybrid of HCCI and SI. Fuel ignited by spark. Energy released increases T and P to auto-ignition conditions for CI combustion	Fuel

3. Methanol Engine Technology and Development Progress - Dual Fuel CI Combustion Concepts

RCCI Reactively Controlled Compression Ignition	 Variation of PCCI and PPCI using dual fuel. EGR. Adjust mass ratio of HRF and LRF to control autoignition and combustion PFI or Early DI of MeOH to form premixed charge of diesel at early or middle of compression stroke. Variations: 2 DI of diesel. First diesel DI to enhance reactivity of fuel mixture, second diesel DI creates stratification. Methanol substitution ~ 50-60% (~ 40% for Chinese engine) 	
HCCI-DI Conventional Dual Fuel	 PFI MeOH with air to form homogenous charge. DI of diesel near TDC for ignition of homogeneous charge. Main fuel energy: MeOH Ignition energy: Diesel Methanol substitution ~ 90% (90% for Chinese engine) 	Inta
Dual Fuel HP- DI High Pressure Direct Injection, non-premix	HP-DI of diesel to create high T and P for MeOH ignition HP-DI of MeOH and diesel to enhance atomisation Injection near TDC Center methanol injector, off-centered diesel pilot injector Methanol substitution ~ up to 95%	(

3. Methanol Engine Technology and Development Progress

2-stroke, low-speed marine engines for large ocean-going vessel

- Commercially available
- Methanol replacement ratio up to 95% with HP-DI
- Retrofit packages for existing engines available

4-stroke, high-speed engines for small vessels

- Development slower, converting from existing diesel engines.
- Methanol replacement ratio ~ 30 to 40% with low-pressure PFI
- Constraints due to size and complexity of high-pressure injection system
- Exception:

22

• Scania single-fuel engine with 3% MD97 additives to overcome ignition and lubricity issues, cost effectiveness

4-stroke, medium speed engines for larger vessels

- New-build and modified engines available commercially.
- Methanol replacement ratio ~ 70 95% with HP-DI

Conclusion

Methanol as a Marine Fuel

Good combustion properties.

Combustion and non-combustion issues can be overcome.

Methanol Fuel Quality

Methanol from biomass likely to contain more by-products, incurring additional cleaning and purification cost. Not an issue if lower purity is acceptable.

Lower purity (crude 90-95%) allows for cost-savings.

Separate specifications based on type of energy converters (external combustion, internal combustion, fuel cells).

23

Methanol Engine Technology and Development Progress Low-speed and medium-speed engines available for larger oceangoing vessels, with high replacement ratio.

Further improvement in replacement ratio and cost competitiveness of high-speed engines for smaller vessels.

If you find our materials helpful, please cite us in your work.

Proper attribution helps us continue to create high-quality resources for the community.

Website: Email: LinkedIn:

24

www.ntu.edu.sg/mesd-coe d-mesd@ntu.edu.sg www.linkedin.com/company/mesd-coe Scan the QR Code to follow MESD on LinkedIn

