

Biofuel as Sustainable Marine Fuel for Low Carbon Shipping

Dr. Sibnath Kayal Research Fellow

Maritime Energy & Sustainable Development, Centre of Excellence, Nanyang Technological University

MESD Seminar 2023

1 December 2023

Biofuel as Alternative Fuels

Liquid or gaseous fuels produced from biomass

Through thermal, chemical and biochemical conversion, biomass can be converted into a variety of biofuel products

Vegetable (edible) oils –palm, soybean, sunflower, rice bran, sesame, peanut, olive, coconut, rapeseed & animal fats and plants containing sugar & starch

2

Lignocellulosic biomass and inedible oils

MESD Centre of Excellence © 2022. Nanyang Technological University. All rights reserved.

Biodiesel Stability: Important Factors

o Biodiesel tends to degrade over time

o Degradation of biodiesel impacts the fuel quality and the storage duration

Name of Ester	Carbon Atom Number	Unsaturated Double Bonds	Oxidative Stability (Relative)	
Linolenate	18	3	Low	
Linoleate	18	2	Low	
Oleate	18	1	Medium	
Palmitoleate	16	1	Medium	
Palmitate	16	Zero	High	
Stearate	18	Zero	High	

FAME composition

Source: Bureman et al., Biodiesel Exposicion Tecnica, 2007.

3

Saturated 🚨 Monounsaturated 🗖 Polyunsaturated

Feedstock Type

Biodiesel Stability: Important Parameters

Key properties related to stability

- Kinematic viscosity increases as oxidation progresses
- Water content higher content leads to degradation
- Acid value quantity of FFAs in the biodiesel
- Iodine value measure of unsaturation
- Oxidation stability susceptible to oxidation

Undesired Product	Equipment Problem	Customer Problem
Sludges, Sediments	 Filter clogging Fuel injector deposits 	Engine stallingSmoke formation
Acids	- Corrosion to engine components	Extra costsEngine stalling
Peroxides - Elastomer embrittlemen		Fuel seepageUnexpected downtime

Source: Bureman et al., Biodiesel Exposicion Tecnica, 2007.

Biodiesel Stability: Remedial Approach

Role of antioxidants

Antioxidant	Name of Antioxidant	Nature	Oxidative instability chain
Туре			Step 1: Initiation
Natural	$\alpha T - \alpha$ to copherol	CI - Chain inhibitor	$RH \rightarrow R\bullet$
Naturai	$\beta C - \beta$ carotene	СІ	
	BHA– Butylated hydroxyanisol	СІ	Step 2: Propagation $R^{\bullet} + O_2 \rightarrow RO_2^{\bullet}$
	BHT–Butylated	CI	
	hydroxytoluene		$ ROO \bullet + RH \rightarrow R-OOH + R \bullet$
	TBHQ- Tert-butylhydroquinone	CI	Step 3: Termination $R \bullet + R \bullet \rightarrow R-R$ $ROO \bullet + R \bullet \rightarrow R-OO-R$
	PG– Propyl gallate	СІ	
Synthetic	PY– Pyrogallol	OQ - Oxygen quencher	
	HC– Hydrogenated cardanol	OQ	
	AHC-Alkyl hydrogenated	OQ	Further polymerization result
	cardanol		formation of sludge and sedin
	GA– Gallic acid	RA - Reducing agent	

tive instability chain reaction: : Initiation R• : Propagation $D_2 \rightarrow RO_2^{\bullet}$

r polymerization results in the tion of sludge and sediment.

Source: Lau et al., Sustainable Energy Technologies and Assessments 2022, 52: 102296.

5

Key Challenges to Adopting Biodiesel

- Limited Production Capacity: Not meet the high demands of the maritime industry
- **Production Costs:** More expensive to produce than traditional marine fuels
- Compatibility and Engine Modifications: Some ships may require engine modifications to use high-blend biofuels (>B50)
- Energy Density: Lower energy density than fossil fuels, affecting vessel performance

6

Summary and Future Directions

Gaps for implementation of high-blend biofuels

- There is a lack of standards for the fuel quality of high-blend biofuels
- Need for improvement of fuel quality for long-term biofuel storage
- Limited adoption of B100 in existing harbour craft, especially those with higher engine power (e.g., > 600 1000 kW) and specific operational requirements that make them harder to electrify (e.g., tankers and tugboats)

	Work Scope	Methodology
•	Biofuel quality improvement for long- term storage	 Addition of additives/antioxidants to biofuels Conduct laboratory tests for fuel quality and material compatibility
•	Assessment of biofuel combustion characteristics and engine performance with related additives	 Interviews/survey with engine makers Analysis of combustion process Testbed study of engine performance Sea Trial

Website: <u>www.ntu.edu.sg/mesd-coe</u> Email: <u>d-mesd@ntu.edu.sg</u> LinkedIn: <u>www.linkedin.com/company/mesd-coe</u>

Scan the QR Code to follow MESD on LinkedIn

https://lnkd.in/gk_HXTSV

8