

The Road to Net Zero: Internal combustion engines for a sustainable future.

This PowerPoint presentation is protected by copyright Rolls-Royce Solutions GmbH expressly reserves all rights to this presentation. Publication, duplication or disclosure to third parties – even in the form of excepts – are strictly forbidden unless expressly approved by the Management of Rolls-Royce Solutions GmbH. Rolls-Royce Solutions GmbH furthermore reserves all rights, particularly in regard of the use, processing reproduction of content related to any intellectual property claims.

Chew Xiang Yu Director, Marine APAC Rolls-Royce Solutions Asia

Rolls-Royce group

A world-class technology company, built on three strong and complimentary business units.

Power Systems is the group's 2nd largest business and frontrunner in electrification.

Civil Aerospace

35

powered by us

Defence

Power Systems

160 customers in over 100 countries

>40,000 customers in 13 different industries

16,400 engines in service around the world

types of commercial aircraft

17,900 total employees

11,100 total employees lim

20,000 reciprocating engines sold per year

total employees

Private © 2020 Rolls-Royce 2

Power Systems At a glance

Rolls-Royce Power Systems provides worldclass power solutions and complete life-cycle support under the product and solution brand *mtu* and serves 13 different customer industries around the world.

Governmental

3 Marine & PowerGen

Employees 9,452

OUR DECARBONIZATION PLAN

2023 The most important engine series are ready for sustainable fuels

2030

Complete product portfolio lowers greenhous gas emissions by 35% to 2019

2021

Net Zero program: Rolls-Royce sets targets for itself on climate neutrality

2025 Power supply with carbon neutral fuel cell systems

netzers

2050

Rolls-Royce Group will be completely climate neutral.

Strategy Power Systems 2030

Transformation from engine manufacturer to sustainable solutions provider

Strengthening the core business

Strengthening our traditional systems & engines portfolio

Solutions provider

Expansion of the existing portfolio with new components, digital products and services

Lifecycle services

Transformation of our business model to utilize the entire product life cycle

Bridge to propeller strategy:

Commercial Marine & Yacht

Our "Bridge to Propeller" offering enables clear customer benefits by connecting propulsion, automation and services.

mtu Series 4000 M03 (unrestricted continuous)

Series 4000 M63

Series 4000 M65 Next Generation

	Series 4000 M03	Series 4000 M05	
Emission compliance	IMO Tier II	IMO Tier II	
PM mass flow, calc (g/kWh), at FSP	0.08	0.031	- 60 %
Max power per cylinder	140 kW	160 kW	+ 14 %
Cylinder versions	8V / 12V / 16V	12V / 16V / 20V	
Power range (kW)	746 - 2240	1380 - 3200	1 + 40 %
Bore / stroke (mm)	170 / 210	170 / 210	
Displacement per cylinder (l)	4.77	4.77	
Max power per volume (kW/l)	29.4	33.8	15 %
Fuel consumption	209 g/kWh	201 g/kWh	- 4 %

mtu

Alternative fuel options to Diesel

ROYCE						
Fuel Options	Syn. Diesel	e-CH4	el. Power	Ammonia	Hydrogen	Methanol
Energy Conv.	Diesel Engine	Gas-Engine	Pure-E Battery	Ammonia Engine	H ₂ -Engine or Fuel Cell	MeOH-Engine or Fuel Cell
Energy Price Factor compared to Diesel	<mark>2x – 3x</mark> Liquid	1.8x - 2.5x Liquified @-162 °C	0.4x - 3.5x	1,8x – 2,25x Liquid @-33°C	1,7x – 2x Liquified @-253 °C 1,3x – 1,5x Compressed @350 bar	1,8x – 2,6x Liquid
Volume / Weight Factor incl. Tank	1x / 1x	4x / 2x	17x / 45x	3x / 3x	3x / 2x 13x / 7x	2,2x / 2,2x
Impact on Application	Volume & space challenges for exhaust gas aftertreatment. Fuel production on large scale difficult.	Ideal for non space critical designs, & known routes with access to infrastructure. Fuel with much experience	Ideal for very short distances with/or low energy demand, near to shore, predictable schedule, non weight or space critical design	High toxicity of fuel, unlikely to be approved for typical RRS applications	Short & medium routes, non space critical design, close to H2 specific infrastructure	Excellent compatibility with ICEs. Liquid and clean fuel, good for ship design. FC for Hotel Load as option
Pro´s	Highest Energy Density. No modi- fication of engine	Medium costs & energy density	Highest energy efficiency No local emissions	Zero carbon solution Medium costs & energy density	Zero carbon solution Low possible production costs	Medium costs & energy density, grey MeOH available (commodity)
Con´s	High production cost and only foreseen for Mobile applications	can be substituted by H2 or methanol (marine)	Highest system volume & weight	still in discussion due to safety	High system volume & weight Logistics & Infrastr.	Infrastructure of green & blue Methanol needs to be developed
mtu	A Rolls-Royce solution				Private © 2020 Ro	Ills-Royce Not Subject to Export Control

Methanol Conclusion

n

Arguments for methanol as the best alternative to fossil diesel in shipping.

Liquid (-98°C...65°C) biodegradable and safe to handle

Available methanol is one of the most traded commodities and a key product for the chemical industry

conventionally produced and traded worldwide on

large scale (>100mio t

p.a.), green methanol production increases

Production

already

Balanced

best alternative in

volume and energy

density compared to other GHG friendly fuels

 Actional Fuel Availability at Ports
 weiger an

Proven already in use at medium speed engines and known by classification societies

Net Zero Ready green methanol can be produced based on green Hydrogen

Flexible methanol can be combined with fuel cells (reformer) for power supply on board

 $\mathbf{r}_{i} = \mathbf{n} \mathbf{e}(\mathbf{r})$

Attractive OPEX of green methanol will be comparable with other GHG-friendly fuels and less than e-diesel

LCC optimization S4000M03 & M05

Significant reduction of lifecycle costs achieved due to increased TBOs and completely new developed maintenance schedules with optimized maintenance tasks. New TBO calculation model resulted in a doubling of TBOs in some cases - up to

96k hrs for M55R 72k hrs for M65 54k hrs for M65L

Extensive analysis of field data led to 6 new load bands

that perfectly match reality

LCC reduction achieved by more then

- 40%

depending on engine type, load profile and boundary conditions

Engine lifetime extended by 40% to

25 years

Reduced lifecycle maintenance cost (per operating hour)

Reduce vessel downtime

mtu NautlQ Foresight

Scheduled maintenance

Scheduled maintenance strategy contains the manufacturer's maintenance specifications according to the agreed load profile.

Predictive maintenance

Predictive maintenance strategy performs analysis with real-time and long-term data as well as data of an ideal system condition and reports anomalies to the crew.

Corrective maintenance

In the event of an alarm, corrective maintenance strategy supports the crew with fault tree analysis, videos and related documentation.

A Rolls-Royce solution

rivate © 2020 Rolls-Royce Not Subject to Export Control 🛛 11

Thank You For Your Attention.

