

Energy and Emission Performance of Singapore Harbour Craft

Dr Xiao Zengqi Research Fellow Maritime Energy & Sustainable Development (MESD) Centre of Excellence Nanyang Technological University

MESD SEMINAR 29 November 2022

Overview of Singapore Harbour Craft

Prefix	Description	Breakdown			
SP	In-port limit carriage of passengers	passenger launch, ferry boat			
SC	In-port limit carriage of dry or packaged cargoes	Mainly supply vessel and barge			
SB	In-port limit carriage in bulk of petroleum, liquefied gases, liquid chemicals or vegetable/animal oils	Mainly bunker tanker and product tanker			
ST	In-port limit for towing, pushing or pulling other vessels.	Mainly tug, some supply vessel and workboat for tug			
SR	In-port limit for any other purposes	Barge, Cabin Cruiser, Jack-up Barge, Junk, Landing Craft, Motor Sampan, Passenger Hover Craft, Piling Barge, Research / Survey Vessel, Sludge / Slop Barge, Speed Boat			

In total, around 2,300 harbour craft (1,600 with engines) are operating within Singapore water: 11% tanker, 29% supply vessels, 7% passenger, 16% tug boat, 37% others

SP, Launch Craft ≤ 12 pax

SC, Ro-Ro Vessel

SB, Bunker Tanker

SR, Research Vessel

SP, Passenger Ferry > 12 pax

SC, Cargo Launch

ST, Harbour Tugboat

SR, Environmental Craft

Source: MESD (2020), "A Study on the Future Energy Options of Singapore Harbour Craft".

Emission Targets for Singapore Harbour Craft

- All harbour craft on low-carbon energy solutions
- 15% reduction in absolute emissions from 2021 levels

Questions to ponder for shipowners and operators:

- What is the current operational profile of my harbour craft?
- What is my baseline emissions?
- How are the baseline emissions correlated to the operational profile of my vessel?
- How should I know that an emission abatement solution works as expected for my harbour craft?
- To what extent will the emission abatement solution work?

Examples of emission abatement solutions:

- Optimising operations
- Use of an alternative fuel
- Battery propulsion
- Technical measures such as changed propeller and changed hull form
- Etc.

Existing Ways of Monitoring Fuel Consumption

Bunker records and tank sounding:

- The commonly-used and probably only ways for many ships to monitor a harbour vessel's energy performance
- Cost-effective and quite reliable in monitoring fuel consumptions at aggregated level
- However, the usefulness is solely reliant on the bunkering and tank sounding frequency
- The data lacks time resolution, may not be useful for vessel performance optimisation

Energy and Emission Performance Measurement (EEPM)

EEPM: Portable Instrument and Data

						Instrument	Parameter	Current Status
Available Instrument					FO Flow Meter	Volumetric Flow Mass Flow Flow Velocity	Fuel consumption record manually using sounding method	
						Shaft Power Meter	Shaft Power Shaft Speed Torque	Not recorded
GPS Sensor	Shaft Power Meter	FO Flow Meter	Exhaust Gas Analyzer & Flow Meter	Electric Power Analyzer	RH & Temp Meter	Exhaust Gas Analyzer & Flow Meter	$\begin{array}{c} \text{CO}_2\\ \text{CO}\\ \text{SO}_2\\ \text{NOx}\\ \text{NO}_2\\ \text{O}_2\\ \text{CH}_4\\ \text{Exhaust Temp}\\ \text{Exhaust Flow} \end{array}$	Not recorded
						Temp & RH Sensor	Temperature Humidity	Can be recorded manually by crew
	*		Rall			Electric Power Analyzer	Ampere Voltage Frequency	Not recorded
	Avai	lable instrum	ment for EEP			GPS Sensor	Speed Location Time	Through AIS, but historical records may be only available at a price
Αναπαριέ πιςτι απιεπτροτ εμετινί								

List of key parameters that EEPM can measure

EEPM: Onboard Data Collection

- Instruments are installed according to different onboard conditions
- Portable instruments are used to ensure minimum vessel modification

EEPM: Onboard Data Collection

- Vessel can go on business as usual for a period according to vessel owner's expectation
 - Onboard instrument maintenance and data collection are carried out periodically to ensure acceptable data quality

EEPM Results Illustration

Operational Profile Analysis

What is the current operational profile of my harbour craft?

Emission Analysis

What is my baseline emissions? How are the baseline emissions correlated to the operational profile?

Engine Performance Analysis

How should I know that an emission abatement solution works? To what extent will the emission abatement solution work?

What is My Current Operational Profile?

Engine load profile of a ST vessel on a day

- Engine load at different vessel activities is shown in the figure
- This ST vessel tends to use about 60-80% engine load during cruising
- Fluctuating engine load during a job, ranging from 10% to 80%

What is My Current Operational Profile?

Fuel Consumption Average Average Vessel **Average Port** Speed % of Time per distance Starboard 19.34% Speed (knot) **Engine RPM** Category Engine RPM travelled 9.53% (kg/NM) <1 knot 45.3% 0.13 12.26 18.38 22.02 12.06% 1-3 knots 8.7% 1.74 1.94 185.05 221.03 8.71% 5.05% 3-10 knots 12.1% 6.34 2.30 577.89 641.14 10-15 knots 5.0% 12.34 3.51 1.054.93 1,090.13 15-20 knots 9.5% 18.01 4.36 1,421.72 1,437.63 19.3% 22.86 5.29 1,661.48 1,684.97 >20 knots <1 knot</p> 1-3 knots 3-10 knots All category 100.0% 7.73 4.63 604.18 624.43 10-15 knots 15-20 knots >20 knots

Recorded time (%) spent and respective fuel consumption in each vessel speed category for a SP (<12 Pax) vessel

- This slide shows the use of raw operational data to generate detailed operational profile analysis
- This SP vessel spends most of the time (45%) with a speed less than 1 knot (engine off or idling)
- During cruising, this vessel tends to travel fast (>20 knots)
- Generally, a slower vessel is associated with a lower fuel consumption per distance

Time (%)

What is My Baseline Emissions?

Date	Gas Analyzer Measured time (min)	PT CO ₂ Emission (kg)	STBD CO ₂ Emission (kg)	PT NOx Emission (kg)	STBD NOx Emission (kg)	PT CO Emission (kg)	STBD CO Emission (kg)	PT Average RPM	STBD Average RPM	Distance Travelled (NM)
Day 1	122.0	66.9	67.0	1.07	1.01	0.057	0.055	1,089.3	1,076.1	16.6
, Day 2	164 0	113 7	119 0	1 69	1 65	0 080	0 090	1 168 2	1 160 1	2A A
Day 2	104.0	113.7	115.0	1.05	1.05	0.000	0.050	1,100.2	1,100.1	24.4
Day 3	57.0	38.2	40.3	0.56	0.61	0.034	0.036	1,112.7	1,111.6	7.9
Day 4	217.0	87.5	89.4	1.53	1.42	0.126	0.108	919.2	910.1	17.2
Day 5	90.0	11.1	10.4	0.35	0.32	0.064	0.052	686.0	666.5	0.0
All Days	650.0	317.3	326.1	5.20	5.00	0.36	0.34	998.6	988.1	66.2

Five-Day Emission Measurement for a SC Vessel

- This slide shows the results of a five-day emission measurement for both port (PT) and starboard (STBD) main engines of a SC vessel
- The emission amount is derived by using our onboard data and following the method in ISO 8178, Part 4
- Daily CO₂, NOx, and CO emissions are included in the table

How are the Emissions Correlated to the Operational Profile?

An example of exhaust emissions of a SC vessel at different vessel speed

- This slide shows the exhaust emissions per distance (CO₂, NOx, CO) at different vessel speed for the same SC vessel
- Exhaust emissions per distance tend to be higher at very low speed or very high speed
- The result can help determine optimum engine load at actual operating conditions, i.e. trade-off between speed and emission
- Significant increase of CO₂ emissions happens at very high vessel speed

Whether an Emission Abatement Solution Work? To What Extent?

Maximum engine RPM trend of a SC vessel over a year

- General decreasing trend implying normal engine wear and tear
- Significant improvement in maximum engine RPM after engine maintenance
- The faster-than-expected decreasing trend after 1st maintenance may be due to the use of high-blend biodiesel

Whether an Emission Abatement Solution Work? To What Extent?

Dependent Variable: CO ₂ Emissions	Coefficients	Standard Error	T-Stat	P-value		
Intercept	-0.351	0.051	-6.877	<0.001		
Maintenance effect	-0.377	0.021	-17.584	<0.001		
Time to previous maintenance	0.00154	0.00011	13.470	<0.001		
Engine RPM	6.44E-10	1.45E-12	444.387	<0.001		
Engine room temperature	0.00834	0.00114	7.336	<0.001		
Biodiesel blend ratio	<mark>0.140</mark>	<mark>0.014</mark>	<mark>10.254</mark>	<mark><0.001</mark>		
HVO blend ratio	<mark>0.0325</mark>	<mark>0.0289</mark>	<mark>1.127</mark>	<mark>0.260</mark>		
F-value	36522.90					
Significance F	<0.001					
R-square	0.98309					
Adjusted R-square	0.98306					
Number of samples	3777					

An example of statistical analysis on a SC vessel emission performance

- This slide shows a statistical analysis how CO₂ emissions are affected by various factors
- The purpose is to identify the impact of using an alternative fuel after eliminating the impacts of other environmental and operational factors
- The results show that a higher biodiesel blend is associated with a slightly higher CO₂ emissions (about 3% increase at B100), while the relationship between HVO blend and CO₂ emission is not significant

- EEPM was developed by MESD to help vessel owners and operators to understand their vessels' energy and emission performance better without the need to install permanent sensors
- EEPM is a holistic method from onboard data collection to data analysis
- EEPM could help ship owners especially harbour craft owners to have a better understanding on:
 - ✓ The operational profile at actual operating conditions
 - \checkmark The baseline emission in an actual operating environment
 - ✓ The usefulness of an emission abatement or fuel saving solution

Scan the QR Code to follow

MESD on LinkedIn

Website: Email: LinkedIn: www.ntu.edu.sg/mesd-coe contact-mesd@ntu.edu.sg www.linkedin.com/company/mesd-coe