Multistain deep learning for prediction of
prognosis and therapy response In

LEE KONG CHIAN

SCHOOL OF
MEDICINE

Mainz, Germany.

Friedrich-Alexander-Universitat
Erlangen-Nurnberg, Erlangen, Germany.

4 Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany.
5 Department of General Visceral and Vascular Surgery, Marien Hospital Mainz, Mainz, Germany.

INTRODUCTION AND PURPOSE

Although it has been long known that the immune cell composition has a strong
prognostic and predictive value in colorectal cancer (CRC), the relevant scoring systems
are not well established. Thus, we established and evaluated a multi stain deep learning
model (MSDLM) utilizing artificial intelligence (Al) to determine the Almmunoscore (AlS)
in more than 1,000 patients with CRC. AIS was found to be a strong predictor of patient
outcomes, and their response to pre-surgery treatment. It outperformed clinical,
molecular, and immune cell-based parameters. Hence, AIS provides clinicians with a
valuable decision-making tool based on the tumor immune microenvironment.

METHODS

Study design:
e 4 cohorts of patients.
o Inclusion criteria: patients with the diagnosis of a colorectal adenocarcinoma of any
UICC stage.
o For each patient, the initial, pre-therapeutic, diagnostic biopsy specimen, as well as
information about tumor regression from the final surgical specimen were collected.
o All experiments were in accordance with the Declaration of Helsinki.
e Immunohistochemistry, digitalization and preprocessing: TMAs were created from FFPE
tissue blocks, with cores from tumor centers and invasive margins.
e Immunoscore: 3 methods which calculated the density of CD3 and CD8 T cells in tumor
tissue to define immune scores.
e BRAF and MMR status
e Model architecture: Multistain Deep Learning Model (MSDLM) to analyze multiple
stained tissue slides. This model utilizes individual neural networks (ResNet18) for each
stain.
e Training and evaluation: The models were trained on 3-year relapse-free survival
(RFSS) data, with relapse or no relapse as the target.
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Figure 1: Clinical characteristics and CONSORT diagrams for the prognostic cohorts (left) and for
the neoadjuvant cohort (right)
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Statiscal analysis:

e Unpaired t-test and One-way ANOVA with the Dunnett’s test to compare between two or
more groups

e Uni- and multivariable Cox regression was used for prognosis analyses. Wald test to
calculate statistical significance.

e Image analysis and deep learning experiments were conducted using QuPath and
Python/PyTorch, respectively.

RESULTS

The diagnostic accuracy of the MSDLM was greater than that of SSDLMs. (see Figure 2
below) The MSDLM also exceeded the prognostic capabilities of classical machine learning
methods, which relied solely on immune cell counts.
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Figure 2: Training and cross-validation of the MSDLM

The AIS, derived from the MSDLM, is proven to provide better patient stratification than
traditional methods based on kaplan-meier analysis and was validated by an independent
external cohort, where it produced robust prognostic accuracy (P < 0.0001). Patients with a
low AIS (AlSlow) had significantly poorer relapse-free survival (hazard ratio: 6.24, P <
0.0001) than those with a high AIS (AIShigh).

Furthermore, the MSDLM showed promise in predicting responses to neoadjuvant
radiochemotherapy in rectal cancer patients achieving accuracy, AUPRC, AUROC and F1
scores higher that SSDLMs. (see Figure 3 below) These findings highlight the potential of
deep learning models, particularly the MSDLM, as powerful tools for prognostic and
predictive applications in colorectal cancer and beyond.
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MSDLM CD4 SSDLM CD8 SSDLM CD68 SSDLM CD20 SSDLM
(P-value) (P-value) (P-value) (P-value)
Accuracy 79.6 +6.13 68.2 + 5.63 70.9 + 5.65 67.6 +4.37 68.3 +4.74
(%) (P =0.0001) (P <0.01) (P =0.0001) (P =0.0001)
AUPRC 0.902 £ 0.047 0.742 £ 0.063 0.806 + 0.048 0.765 + 0.055 0.776 £ 0.075
(P =0.0001) (P <0.01) (P =0.0001) (P =0.0001)
AUROC 0.896 + 0.040 0.757 £ 0.070 0.796 + 0.039 0.752 + 0.049 0.742 + 0.068
(P =0.0001) (P =0.001) (P =0.0001) (P =0.0001)
F1 Score 0.819 + 0.051 0.690 + 0.048 0.756 + 0.050 0.678 + 0.045 0.726 + 0.036
(P <0.0001) (P <0.0001) (P =0.0001) (P =0.0001)

Figure 3. Table of accuracy, AUPRC, AUROC and F1 scores of MSDLM and SSDLM
DISCUSSION

The reasons underlying differences in predictive power between MSDLM and SSDLM
can be summarised in Figure 3 below.
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Figure 4: Table showing the differences in how MSDLM and SSDLM operate

As shown below, Figure 5 depicts the differences in accuracy between SSLDM and
MSLDM in predicting CRC prognosis.
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Figure 5: The boxplots compare the predictive accuracies of different models

Apart from showing the differences in predictive power between MSLDM and SSDLM,
this study raises two interesting points as well.

e Firstly, MSLDM outperforms traditional methods like staging and resection status in
predicting neoadjuvant therapy outcomes. This shows that it surpasses established
CRC prognostic tools, in addition to models like SSLDM.

e Secondly, MSLDM predictions are aligned with established immuno-oncological
principles. For example, the positive prognostic impact of CD8+ T cells and CD20+ B
cells are reflected in the model's workings®#. Likewise, the negative association of
monocytes and macrophages with CRC progression are considered by the MSDLM®
(see Figure 6 below).
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Figure 6: These two boxplots compare the relative contributions of each immune cell type to the
overall prediction of ‘no relapse’ (left) and ‘relapse’ (right) made by the MSLDM.

Having explained the benefits of MSLDM, there are two limitations to using such a model.

e Firstly, the predictions of the model has to be confirmed by additional prospective
multicenter studies®. Coupled with the lack of external validation of the results, there is
a possibility that the MSLDM is overfitting the data.

e Secondly, the use of additional image processing techniques or multiplexed images
could further refine predictions made by the MSLDM.

CONCLUSION

To conclude, MSLDM can be a valuable addition to current methods in assessing the
TIME for the prognostication of CRC. The model incorporates IHC stains that are cheap
and ubiquitously found. Given that we are in the digital age, MSLDM can be seamlessly
added to current workflows that are used to predict the prognosis of CRC.

Specifically, a digital application hosting MSLDM could be envisaged for doctors to submit
histological slides and obtain an AlS for their patients. In this way, MSLDM represents a
significant step forward in CRC prognosis and therapy planning, aligning state-of-the-art
Al with clinical needs.
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