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The Role of Anti-ACKR1 Autoantibodies
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Introduction

The long-term effects of COVID-19 extend beyond the acute infection
phase. Among these, endothelial dysfunction, characterised by impaired
blood vessel health, has emerged as a significant concern due to 1its

assoclation with cardiovascular diseases.
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This study explores the intricate mechanisms by which chronic
inflammation triggers anti-ACKR1 auto-antibody response and how

this may potentially influence endothehal dysfunction amongst post-
COVID individuals.

Methods

This study employed a cross-sectional design, investigating the long-
term endothelial, haematological and cardiovascular complications
post-COVID patients established
Anti-ACKRI1 levels

quantified using flow cytometry-based assays, and individual ACKRI1

amongst without prior

cardiovascular diseases. autoantibody were

genotypes were determined using Sanger sequencing.

Subsequently, the effects of human plasma immunoglobulin G (IgG)

from participants on human vascular endothelial cells were analysed

including apoptosis, barrier function and antibody-dependent cell
cytotoxicity. Liposome ACKRI1 recombinant protein and a blocking

peptide were tested in their efficacy of negating the effect of anti-
ACKR1 autoantibodies.

Assays to interrogate autoantibody-mediated
endothelial dysfunction

Patient-derived materials Intervention of autoantibody-antigen interaction

Individuals with
high levels of
anti-ACKR1

Blocking peptide
mimics this
extracellular :
domain that & Toumsendathalie

Cell apoptosis

/ contains Fya and e
Fy6 epitopes Endothelial barrier permeability

Isolation of 1 ACKR1 native protein * s

ey plasma
IgG purification ik S - A o
from pooled eptide or recombinan Do S 8

, J ‘;d-t p|agma protein bound 2 Cf\ﬂ:/«[’/ . Effector
A\ 4 X anti-ACKR1 cannot #/( - § . e 2 he e /.

T bind target epitopes I T&\ N A

S AR O R R S :

il
o
-
B
=]
22

Y on endothelial cells e o Antibody-dependent cell cytotoxicity
Endoth th

Figure 2: Experimental workflow to determine autoantibody-dependent cytotoxicity from patient plasma

Results

TNFa treatment, a surrogate mimicking long term mflammation due to
COVID-19, revealed the expression of ACKRI1, an atypical chemokine

receptor, 1n both arterial and venular endothelial cells.
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This study also revealed significant findings that underscore the role of
antl-ACKR 1 autoantibodies in post-COVID endothelial dysfunction.

Post-COVID survivors exhibited significantly elevated concentrations
of anti-ACKR1 autoantibodies (p<0.05) correlating with 1ncreased
systemic cytokine levels and damaged circulating endothelial cells as

compared to their non-infected counterparts.
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Cell cytotoxic assays showed that both purified IgG and participants’
peripheral blood mononuclear cells led to significantly higher levels of
antibody-dependent and 1mmune  cell-mediated  cytotoxicity
respectively. Interestingly, this response was abrogated by the inclusion
of blocking peptides and liposome ACKRI1, with the latter significantly
reducing levels of late-apoptotic cells as well as improving endothelial

barrier tightness.

While 1t has yet to be proven 1n human subjects, literature showed high
expression of ACKRI1 in murine brain and soleus muscle venous
endothelial cells potentially explaining site-specific compliacations like

deep vein thrombosis when corroborated with our study.

Discussion & Outlook

The findings of this study highlight a novel pathogenic mechanism
underlying post-COVID endothelial dysfunction. Elevated anti-ACKR 1

autoantibodies appear to exacerbate vascular damage by amplifying

systemic 1nflammation and 1mpairing chemokine scavenging.
Interventions such as neutralising antibodies or blocking peptides could
offer a promising approach in therapeutics to mitigate chronic vascular
inflammation. Additionally, the role of anti-ACKR1 autoantibodies 1n

other inflammatory conditions warrants exploration.

Conclusion

This study i1dentifies anti-ACKR1 autoantibodies as a key factor
contributing to endothelial dysfunction in post-COVID patients. By
linking these autoantibodies to inflammatory pathways, the findings
provide a deeper understanding of endothehal dysfunction i chronic
inflammatory conditions and open new avenues for targeted therapies.
The results underscore the importance of addressing endothelial health
in the management of post-COVID complications to reduce the burden

of cardiovascular diseases.
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