

Enterococcus faecalis suppresses Staphylococcus aureus-induced NETosis and promotes bacterial survival in polymicrobial infections

Patrick Hsien-Neng Kao^{1,2}, Jun-Hong Ch'ng^{3,4,5,6}, Kelvin K.L.Chong², Claudia J.Stocks², Siu Ling Wong^{7,8}, Kimberly A.Kline^{1,2,9}

Presenters: Matthew Sim, Gerald Tee, Meagan Ho

¹School of Biological Sciences,Nanyang Technological University,Singapore 637551

²Singapore Centre for Environmental Life Sciences Engineering,Nanyang Technological University,Singapore 637551

³Department of Microbiology and Immunology,Yong Loo Lin School of Medicine,National University of Singapore,Singapore 117545

⁴Singapore Centre for Environmental Life Sciences Engineering,National University of Singapore,Singapore 117456

⁵Department of Surgery Yong Loo Lin School of Medicine,National University of Singapore,Singapore 117597

⁶Infectious Disease Translational Research Program,National University Health System,Singapore 117545

⁷Lee Kong Chian School of Medicine,Nanyang Technological University,Singapore 636921

⁸Tan Tock Seng Hospital,National Healthcare Group,Singapore 308433

⁹Department of Microbiology and Molecular Medicine,Faculty of Medicine,University of Geneva, Geneva, Switzerland 1211

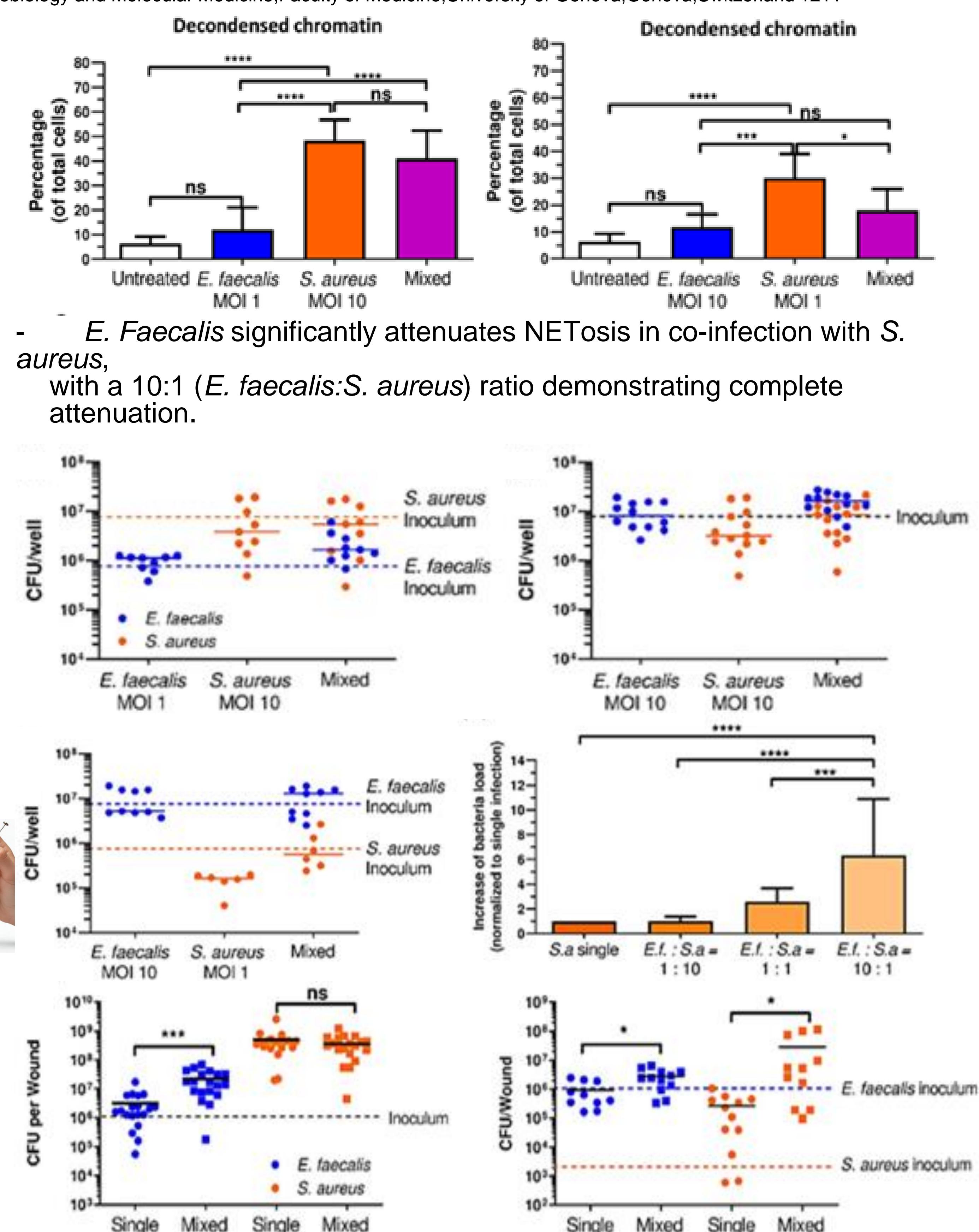
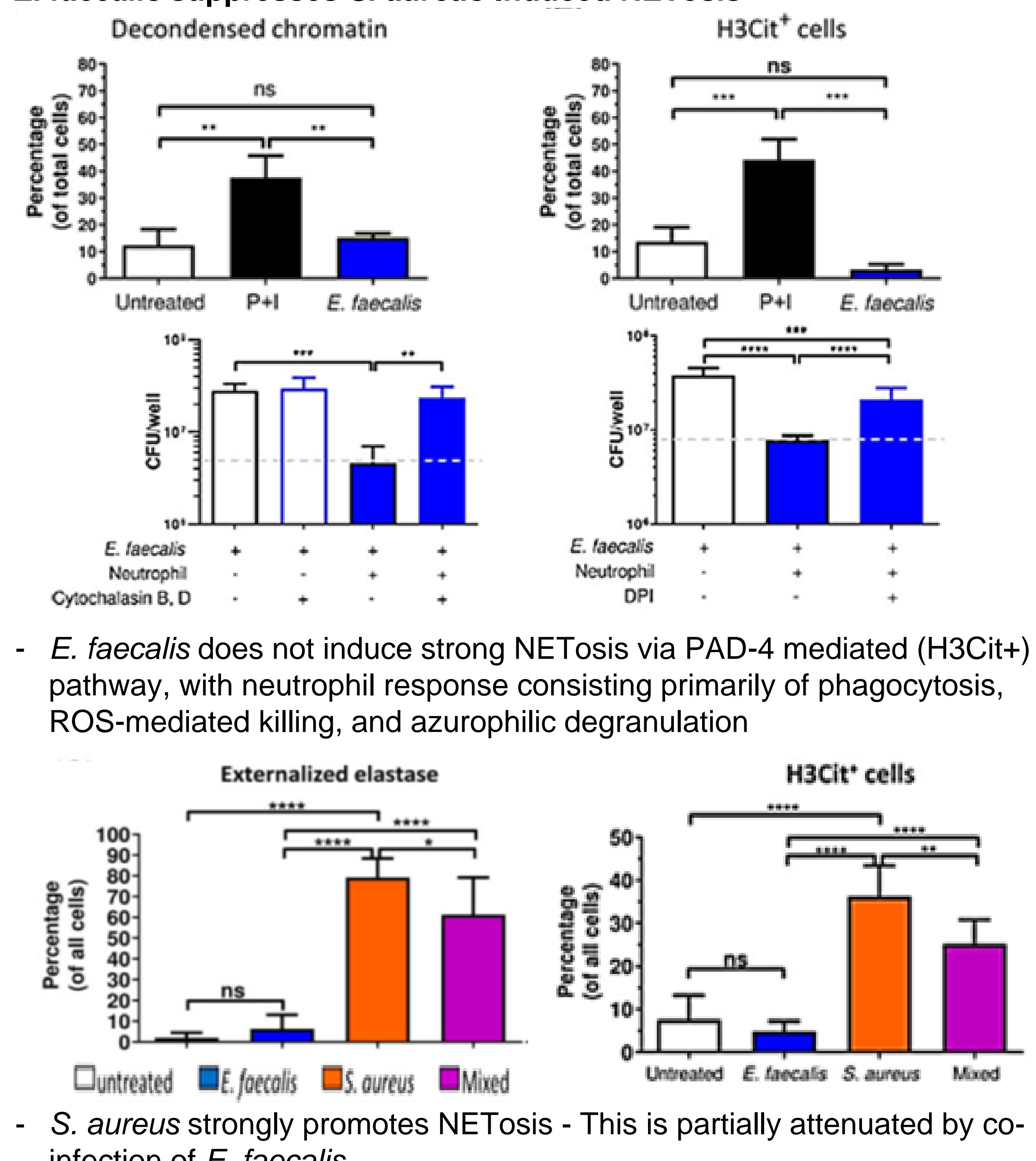
INTRODUCTION

Polymicrobial infections are often correlated with poorer prognoses such as higher mortality. *Enterococcus faecalis* is notorious for its antibiotic resistance and mechanisms to avoid immunosurveillance. Worryingly, *Staphylococcus aureus* is found to be increasingly co-isolated with *E. faecalis*, together increasing their overall virulence and pathogenicity in a host.

Neutrophils is fundamental to the immune response of a host. However, recent studies showed that neutrophil responses towards *E. faecalis* is not only lacking, *E. faecalis* also possesses the ability to reduce *S. aureus*-induced neutrophil extracellular trap formation (NETosis). This commensalistic relationship has profound implication for the treatment of these polymicrobial infections.

This study investigates the mechanisms by which *E. faecalis* modulates neutrophil-mediated immune responses in co-infections and explores its impact on the survival of *S. aureus*, highlighting a novel aspect of immune subversion in polymicrobial infections.

MATERIALS AND METHODS



S. aureus (USA300LAC) and *E. faecalis* (OG1RF) in standard culture media to specific optical densities

Mice bone marrow neutrophils (C57BL/6 mice) via magnetic-activated cell sorting

In-Vitro Assays		Mouse Wound Infection Model
Neutrophil-Bacteria Interaction & Survival Neutrophils infected with single or mixed species with bacterial survival assessed		
Phagocytosis Reactive oxygen species (ROS) production was measured using diphenyleneiodonium and fluorescence assay	NETosis Chromatin decondensation, citrullinated histone H3, neutrophil elastase assessed by immunofluorescence microscopy	
Degranulation Flow Cytometry analysis of surface markers (CD63, CD15, CD14, CD16) Neutrophil death via ATP detection (assay)		Tissue samples were collected at 24 hrs with bacterial CFUs enumerated

RESULTS

E. faecalis suppresses *S. aureus*-Induced NETosis

- In vitro assays and In vivo wound infection models showed higher inoculum of *E. faecalis* protects *S. aureus* from neutrophil-mediated antimicrobial functions during co-infection.

DISCUSSION AND CONCLUSION

Key findings on *E. faecalis* and *S. aureus* interactions

- Polymicrobial infections, such as those that involving *S. aureus* and *E. faecalis* are often found in chronic infections, and they complicate treatment due to increased antibiotic resistance and unique survival mechanisms.
- *E. faecalis* alone fails to induce NETosis and actively suppresses NET formation by *S. aureus* in a dose dependent manner in coinfections, promoting the survival of *S. aureus*.
- Coinfection decreases level of citrullinated histones which inhibits NETosis.
- *E. faecalis* is able to evade NETosis-mediated killing and proliferate in coinfections. This is due to virulence factors to avoid NETosis-mediated killing and degrading NET structures.

Limitations of study

- While *E. faecalis* is able to reduce citrullination, it is unclear if *E. faecalis* directly inhibits PAD-4 or if the reduction is due to other indirect mechanisms.
- It is unclear whether the increased in vivo population of *S. aureus* is a result of impaired NETosis or other external factors. Bacteria metabolite exchange and other host cells may have contributed to the colonisation of *S. aureus*.

FUTURE DIRECTIONS

By investigating the specific pathways through which *E. faecalis* attenuates histone citrullination could possibly lead us to discovery of therapeutic targets for treatment.

Clinically, we could collect wound samples from diabetic patients to analyse the interactions between *E. faecalis* and *S. aureus* in vivo. This could allow us to produce more targeted interventions for these co-infections.