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ABSTRACT |

Extreme events such as heavy rainfall, floods and dry spells cause severe damage to society and the environment. Urban
regions are more vulnerable to such changes in extremes because of large population and concentration of economic
assets. Southeast Asia (SEA) in particular is vulnerable to rainfall-driven hazards due to the presence of human
settlements in low-lying coastal areas. An important step in the assessment of flood risk and resilience is to quantify the
patterns of rainfall extremes under present and future climate scenarios. In this regard, we analysed daily rainfall
projections from the NASA Earth Exchange (NEX) high resolution (0.25°) climate model ensemble of 20 global climate
models and two emission scenarios. Projected changes in rainfall structure are quantified for six major cities in SEA
covering Bangkok, Kuala Lumpur, Singapore, Jakarta, Ho Chi Minh City, and Manila. The study also focused on wet and
dry regions in SEA as well as the low elevation coastal zones. Different aspects of rainfall structure are studied including
annual precipitation amount, number of heavy rainfall days, precipitation from extreme rainfall days, and annual maximum
daily rainfall. It is observed that many regions in SEA face increased total rainfall and extreme rainfall by the end of the
21st century, thus increasing the region’s vulnerability to rainfall driven hazards such as floods. However, there is
significant intermodel spread in the projected centennial changes.

INTRODUCTION

Southeast Asia (SEA) region has more than 20,000 islands, long coastlines, complex topography, and a
population of ~650 million that is projected to reach 780 million by the year 2050 (UNPD, 2018). The region is
home to densely populated megacities including Bangkok, Jakarta and Manila, and rapidly urbanizing cities
such as Hanoi, Ho Chi Minh City and Kuala Lumpur. A significant fraction of the region's population is exposed
to flooding (e.g., Arnell and Gosling, 2016). For example, the 2011 Thailand floods lasted for 158 days and
caused a number of fatalities along with economic losses of USD 46.5 billion (e.g., World Bank, 2012;
Haraguchi and Lall, 2015; Promchote et al, 2016). The city of Jakarta faces severe floods on a regular basis,
with recent major ones during January 2007 and 2013.

Intensification of hydrologic cycle is expected with global warming because of an increase in atmospheric
moisture content (e.g., Held and Soden, 2006; O’Gorman and Schneider, 2009; Trenberth, 2011). Recent
studies have shown that changes in precipitation extremes are more prominent than annual accumulation
(e.g., Kharin et al, 2013; Donat et al, 2016; Mandapaka and Lo, 2018). The intensification of rainfall extremes
due to climate change together with increasing population and urban land fraction increases the vulnerability
of the region to floods (e.g., Winsemius et al, 2016). While changes in precipitation extremes affect the
occurrence of droughts and floods, the changes in precipitation totals have an effect on water availability for
agriculture, thereby affecting the economy of the region. For example, agriculture in Cambodia, Vietham and
Laos contributes to 27%, 18% and 19% of GDP, respectively (World Bank, 2017). A robust characterization
of the effect of changing climate on regional precipitation patterns is required for planning necessary strategies
to mitigate the impacts on society and environment.

Because of the complex geography (e.g., land-sea structure and long coastlines) of SEA, it is difficult to obtain
a good local scale assessment of changes in precipitation using global climate models (GCMs), which have a
typical spatial resolution of 1.5-2.5° (160-260 km at the equator). The aim of this study is to quantify the
changes in SEA precipitation at a resolution finer than the GCMs. For this purpose, we employ the NASA
Earth Exchange Global Daily Downscaled Projections (NEX-GDDP; Thrasher et al, 2013), which are available
at a resolution of 0.25° and at daily scale. The historical record of NEX-GDDP spans from 1950 to 2005 and
future projections are available for the Coupled model intercomparison project phase 5 (CMIP5; Taylor et al,
2012) period of 2006-2099 under representative concentration pathways (RCP) 4.5 and 8.5. The RCP4.5
represents an intermediate emissions scenario with a radiative forcing of 4.5 W/m?2 by the year 2100, whereas
RCP8.5 is a high emissions scenario with increasing greenhouse gases leading to a radiative forcing of 8.5
W/m?2 by the year 2100 (e.g., Van Vuuren et al, 2011). The NEX-GDDP data has been used in a number of
studies to assess changes in rainfall and temperature at regional scales (e.g., Ahmadalipour et al, 2017; Bao
and Wen, 2017; Chen et al, 2017). The historical and future rainfall from an ensemble of 20 GCMs in NEX-
GDDP are used here for the region extending from 90-150E and 10S-20N.



METHODS

Indices Used

We used four indices in this study: (i) annual precipitation amount (PRCPTOT), (ii) number of heavy rainfall
days (rainfall = 10 mm/day, R10), (iii) precipitation amount from days with rainfall = 90t percentile of rainfall
(R90P), and (iv) annual maximum daily rainfall (RX1DAY). The indices were obtained for each year and for
each season. It is noted that wet day is defined in this study as days with rain = 1 mm/day. The indices at each
grid cell are normalized with the corresponding climatological index from the baseline period (1970-1999) to
minimize the effect of large values on regional averages.

Quantifying the Changes

We evaluated the temporal trends in indices using the Mann-Kendall (MK) nonparametric test (e.g., Kendall,
1975; McCuen, 2002), where the null hypothesis of no trend is tested at a significance level of 5%. The
magnitude of the trend was then obtained using Sen's nonparametric regression (e.g., Sen, 1968). Both MK
test and Sen's regression are extensively used in Earth sciences for assessing trends (e.g., Gan, 1998; Westra
et al, 2013; Mandapaka et al, 2016). As the Sen's slope is an estimate of the linear trend in time series, we
also employed a second approach to assess the changes in future rainfall, which involves computing average
indices for a 30-year future time period 2070-2099. The trends and changes are obtained for each index and
for each grid cell, and their spatial variability is analyzed.

Regional-to-Local Scale Assessment

We assessed the changes in rainfall at local scale by focusing on six major cities in the region: Bangkok (BKK),
Kuala Lumpur (KUL), Singapore (SIN), Jakarta (JKT), Ho Chi Minh City (HCM), and Manila (MNL). All these
cities have population exceeding 5 million, and have undergone rapid urbanization in the past few decades
(e.g., Kamarajugedda et al. 2017). In addition to these six cities, we assessed the future rainfall changes for
two masks based on rainfall climatology. The purpose of climatological masks is to study future rainfall
characteristics in dry versus wet areas in the region. For each model, we grouped grid cells within the bottom
and top quartiles of land-only baseline PRCPTOT as dry and wet cells, respectively. The dry and wet masks
are hereafter referred to as L-dry and L-wet, respectively.
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Figure 1 Study region showing dry (red) and wet (blue) grid cells based on 1970-1999 climatology,

location of six cities and low elevation coastal zones (LECZ) shown in beige.

The wet regions are mainly present in Borneo and New Guinea, western coasts of Sumatra and Myanmar,
and eastern Philippines, whereas the dry grid cells are mainly concentrated in continental Southeast Asia,
Java and nearby islands (Figure 1). The study also focused on the low elevation coastal zones (LECZ), which
are delineated using the U.S. National Geophysical Data Center's ETOPO1 dataset. The ETOPO1 one arc-
min resolution elevation data are regridded to 0.25° resolution (i.e. the resolution of the NEX-GDDP dataset)
and the coastal grid cells with elevation below 25 m are categorized as LECZ region. The LECZ grid cells
occupy about 5.5% of the study area. All nine regions (i.e. six cities, dry, wet regions and LECZ) are shown in
Figure 1.



RESULTS

Spatial Patterns in Ensemble Mean Changes

The MK test was applied on 2006-2099 time series (i.e. on model future projections) of normalized index at
bution of trends in multimodel
mean time series of normalized PRCPTOT and RX1DAY for RCP4.5 and RCP8.5 scenarios. The stippled
grids in Figure 2 indicate that at least 15 of the 20 GCMs agree on the sign of trend. The total precipitation as
well as the annual maximum daily rainfall exhibit significant upward trend in the majority of the study region.
As expected, the trends in PRCPTOT and RX1DAY are more pronounced for higher emissions scenario
RCP8.5. PRCPTOT can increase at a rate of 4% per decade in northern parts of continental SEA for high
emissions scenario of RCP8.5. The trends in RX1DAY also exceed 4% per decade for Central Borneo and in
northern parts of continental SEA. Some grid cells in the Indian Ocean region southwest of Sumatra and Java
in some of these pixels even

each grid cell, and the trends were evaluated. Figure 2 shows the spatial distri

show a decline in PRCPTOT. However, the RX1DAY shows an upward trend
when the total precipitation is declining.
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Figure 2 Spatial distribution of decadal trends in (top) PRCPTOT and (bottom) RX1DAY, for (left) RCP 4.5 and (right)
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Figure 3 Evolution of normalized precipitation indices for BKK, KUL, HCM, and MNL. The solid thick lines and the shaded
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Temporal Evolution of Indices at City-Scale

To assess the local-scale changes, we obtained the time series of the normalized indices for the six selected
cities from each of the 20 GCMs. Figure 3 shows the temporal evolution of multimodel mean and standard
deviation of normalized PRCPTOT, R10 and R9O0P for four cities. A value of 1.2 for an index in Figure 3 implies
a 20% change at that point of time relative to the baseline period of 1970-1999. The results indicate consistent
increase in all indices throughout the twenty-first century, especially for the higher emissions scenario RCP8.5.
Results for other two cities (SIN and JKT) also show considerable changes by the end of twenty-first century.

Changes in Precipitation during 2070-2099

Figure 4 displays centennial changes (i.e. relative to 1970-1999 period) in all four indices averaged over six cities and
three regional masks (dry, wet and low-elevation coastal zones). The vertical bars represent the intermodel spread in the
form of ensemble mean +1 standard deviation. Among the six cities, BKK, HCM and MNL show larger changes in
PRCPTOT. The ensemble mean +1 standard deviation in PRCPTOT ranges from 0 to 40% with a mean of 20% for
BKK, and 5 to 42% with a mean of 23% for MNL for the higher emissions scenario RCP8.5. The city of JKT has the
smallest average increase of 5% in PRCPTOT for RCP8.5. Both dry and wet regions show an increase in PRCPTOT,
with the ensemble mean increase in the former somewhat higher (18%) than the latter (15%).
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Figure 4 Changes in rainfall indices averaged over six cities and three regional masks for the time period 2070-2099
relative to the 1970-1999 period. The vertical bars represent intermodel spread in the form of ensemble mean +1
standard deviation.

The number of heavy rainfall days (R10) and the precipitation amount from the extreme rainfall days (R90P) follow a
pattern that is similar to PRCPTOT, i.e., large changes for BKK, HCM and MNL, and weaker response for SIN and JKT
(Figure 4). By the end of the 21t century, the multimodel mean projected increases in R10 for BKK and MNL are 21%
and 19%, respectively for the RCP8.5. The projected increases are higher for extreme rainfallindices R90P and RX1DAY.
For example, the multimodel mean increase in BKK is 32% for RX1DAY compared to 20% for PRCPTOT. The projected
increases in PRCPTOT, R10 and R90P are somewhat stronger for dry regions compared to wet regions. On average,
the R10 in dry region is projected to increase by 18% compared to 10% in wet region under RCP8.5. The pattemn is
similar for RCP4.5 although with smaller magnitudes. However, the index RX1DAY shows slight increase for wet regions
compared to dry regions. On average, the annual maximum daily rainfall in low elevation coastal zones for RCP8.5
scenario increases by 20% towards the end of the 215t century.



CONCLUSIONS

This paper presented results on local to regional scale changes in SEA rainfall due to warming climate.
Because of the complex geography of the region, any assessment of the climate change impacts on rainfall
patterns has to be conducted at a higher resolution than the typical resolution of GCMs. We employed a
recently released statistically downscaled climate model projections from the NASA Earth Exchange to assess
changes in rainfall structure at a spatial resolution of 0.25°. The finer resolution of the projections allowed us
to quantify the rainfall changes at city level for six major cities with population exceeding 5 million. Different
aspects of rainfall structure were studied including precipitation amount, heavy rainfall days and annual
maximum daily rainfall. In addition to six cities, the study also quantified regional changes by focusing on
climatologically dry and wet regions as well as low elevation coastal zones.

The results from the trend analysis showed substantial increases in annual precipitation amount as well as
the extremes for a majority of grid cells in SEA. The magnitude of trends is larger for the higher emission
scenario RCP8.5, particularly in the northern parts of SEA as well as in Central Borneo. Furthermore, the
changes in extremes were found to be larger than those in annual precipitation total. Among the six cities
studied, BKK and MNL have stronger changes followed by HCM. On average, the total precipitation under
RCP8.5 for BKK and MNL is projected to increase by 20% and 23%, respectively towards the end of the 21st
century. The corresponding changes in annual maximum daily rainfall are 32% and 24%, respectively. The
impact of these changes in precipitation structure on future riverine and coastal flood risk needs to be assessed.

The global warming induced changes in rainfall extremes need to be studied in an integrated framework
together with changes in exposure (e.g. population growth and land cover changes) and vulnerability (e.g.
poverty, education and governance). A few studies have developed such frameworks and assessed flood risk
at global scale for major river basins using global climate models (e.g., Winsemius et al, 2013; Winsemius et
al, 2016; Alfieri et al, 2017). Similar efforts are underway at ICRM, with focus on SEA region using finer
resolution climate model projections and ancillary datasets.
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