cegotzd NANYANG
«—< | TECHNOLOGICAL Institute of Catastrophe
f =') UNIVERSITY Risk Management

SINGAPORE

Counterfactual Insurance Disaster
Analysis

Gordon Woo

ICRM Topical Report 2014-001
April 2014

Contact Us:

Executive Director, ICRM
(ExecDir-ICRM@ntu.edu.sg)
N1-B1b-07, 50 Nanyang Avenue,
Singapore 639798

Know the Risk. Be Prepared.



ABSTRACT |

A statistical foundation of risk analysis is the database of actual insurance loss experience. The pastis traditionally treated
by both historians and disaster professionals as fixed and immutable. But from a physicist's perspective, history is just
one possible realization of what might have happened. A stochastic analysis of the past is an exploratory exercise in
counterfactual history, helping reduce surprise at extreme events. The value of counterfactual insurance disaster analysis
is illustrated with examples from a diverse range of natural and man-made perils.

1. INTRODUCTION

A statistical foundation of actuarial analysis is the database of actual loss experience. Whenever a
catastrophe loss event occurs without apparent historical precedent, insurers may be resigned to learning by
costly surprise. The 21st century has spawned a special glossary of terms to describe surprising catastrophes:
black swans, dragon kings, unknown unknowns etc.. Risk ambiguity and Knightian uncertainty are often cited
to explain the limits of risk analysis and excuse surprise as almost inevitable. But apart from learning a new
vocabulary to cover unforeseen catastrophe losses, how might insurers be better prepared to cope with such
extreme rare events, and be surprised less?

One avenue of development is to explore the realm of counterfactual history — what might have happened.
From a physicist's perspective, history is just one possible realization of what might have happened. But the
past is traditionally treated by historians, disaster professionals and insurers as fixed and immutable. Indeed,
etymologically, the word disaster means an unfavourable aspect of a star; as if the clockwork motions of the
stars pre-determined the dates of catastrophes astrologically as precisely as eclipses.

Major surprises may be discovered lurking in alternative realizations of historical experience. A writer of
counterfactual fiction, Philip Roth (2004), has noted that ‘The terror of the unforeseen is what the science of
history hides’. All manner of unforeseen surprising catastrophes were close to occurring, but ultimately did
not materialize, and hence are completely absent from the historical record, and therefore remain hidden from
view of insurers. The hijacking of a passenger jet just to be flown into an iconic structure might have happened
before 9/11; the Algerian terrorist organization GIA attempted to destroy the Eiffel Tower in Paris in this way
in 1994. A fundamental paradigm of counterfactual history is that of the near miss: disasters hidden by history
because they never quite happened, and just remain mostly forgotten as near misses. At the time of 9/11,
very few property underwriters would have been aware of the Eiffel Tower plot, and its implications for aviation
risk.

Landslide disaster provides a compelling visual metaphor of all manner of near misses. On 21 January 2014,
a landslide in the Alpine village of Ronchi di Termeno in northern Italy sent two giant boulders tumbling
downhill towards a 300 year old farmhouse. One boulder, about 160 cubic metres in size, came to rest right
against the farmhouse, narrowly missing a vehicle. The second boulder smashed all the way through an
adjacent barn, missing the farmhouse by less than a metre, and continued rolling before its momentum ran
outin avineyard. Most remarkably, the final vineyard resting place of this massive boulder was actually close
to where another huge boulder had come to rest from some previous major rockfall. This old boulder, which
apparently had been there for many years, is shown in the foreground of Figure 1. This was tangible evidence
of an earlier near miss, so providing warning of the landslide danger, which had gone unheeded. In this case,
as often with hazard warnings, psychological relief that a disaster has been averted induced a mental state of
risk amnesia and apathy that substituted for effective risk mitigation. Action to eliminate the mountain risk
source was only taken after the January 2014 near miss.



Figure 1: A giant boulder came down the Alpine mountain on 21 January 2014, just missing a farmhouse,
and stopping just short of where another giant boulder had come to rest years previously. [Photo: Markus
Hell, AP]

Fortunately, there were no casualties from this landslide. Two months later, on 23 March 2014 on a hill in
Washington State in the northwest United States, a mudslide engulfed the village of Oso and claimed many
victims. It was similar to the Steelhead landslide of 25 January 2006, that counterfactually might have killed
many and discouraged further home construction, which carried on regardless. The surprised local head of
emergency management stated that the 2014 event was a completely unforeseen slide that came out of
nowhere.

With the current state of historical and scientific knowledge, there are very few hazard events that should take
catastrophe insurers by surprise. Almost all either did happen before in some guise, or, taking a counterfactual
view, might well have happened before. Take for example the great tsunami and magnitude 9 earthquake of
11th March 2011. It is doubtful that this was the strongest historical earthquake to have struck Japan. The
Sanriku Earthquake of 869 is a strong candidate, as judged by a joint research team of Osaka City University.
They found evidence that traces of the tsunami following this 9th century earthquake impacted an extremely
wide area including not just two but all three main prefectures of northeast Japan. This large area indicated
to these researchers that the earthquake that caused this enormous tsunami might have measured around
magnitude 9.

The respected doyen of Japanese seismology, Prof. Kanamori, had estimated the maximum magnitude to be
much lower, around 8.2, on the basis of a global comparison of similar tectonic regions. Granted that the 869
tsunami deposit evidence was indirect and circumstantial, there was still a significant likelihood that the
magnitude of the 869 earthquake exceeded the hitherto perceived maximum value of 8.2. Furthermore, even
if the 869 event magnitude had just been on the borderline of 8.1 or 8.2, there is a counterfactual dynamic
argument that future fault slip might potentially exceed whatever it was in 869.

With such counterfactual arguments unregistered, Japanese society was unprepared and the Japanese
coastal tsunami defences were inadequate to cope with the massive tsunami of 11 March 2011. The greatest
natural disaster of modern times in Japan was amplified by the loss of coolant accident at the Fukushima
nuclear plant, which had tsunami defences deterministically designed for a grossly sub-optimal maximal event.

The nuclear industry, in common with all other technological industries, has a substantial database of near
misses and close calls (e.g. Hopkins, 2010), from which safety lessons should be learned, if statistics other
than actual incidents and casualties are taken into account. In the interest of promoting safety within industry



and reducing the prevalence of accidents, near-miss management systems have been advocated by
Kleindorfer et al. (2012), following on from studies at the Wharton Business School, including operational risk
(Muermann et al., 2002). Regrettably, the warnings afforded by near misses are often disregarded and
ignored by insurers.

The greatest US natural disaster and insurance loss of modern times was caused by the storm surge of
Hurricane Katrina in August 2005. During Hurricane Katrina, more than half of the three and a half thousand
miles of levees that protect Greater New Orleans were damaged, breached, or destroyed. The infrastructure
failures observed in the Greater New Orleans area were partly man-made and might have been prevented. A
combination of engineering errors and political decisions resulted in an inferior hurricane protection system.
In the decade preceding the levee onslaught of Hurricane Katrina, warning of future hurricane disaster for both
public officials and insurers came from two near misses of New Orleans: Hurricane Georges in 1998 and
Hurricane Ivan in 2004.

For any insured peril, a statistical analysis of actual loss experience is a natural and obvious actuarial starting
point for insurance risk management. However, for perils that may be manifested in rare extreme events, the
underlying experience data may be far too sparse for reliable application of statistical methods. Furthermore,
the absence of losses tends to lead behaviourally to market complacency. Hurricane Alicia in 1983 was the
first hurricane to hit the United States mainland since Hurricane Allen in August 1980. The three year interlude
between these two storms was the longest quiescent streak since 1932. This inter-event soft period was a
period of strong expansion within Lloyd's of London, which welcomed as new members thousands of new
individual investors. It was following Hurricane Alicia that the market displayed an anomalous feedback
instability notorious as the London market spiral.

The pitfalls of relying on historical losses alone are illustrated by another classic insurance example: California
earthquake insurance between 1971 and 1993 (Kluppelberg et al., 1997). The highest loss ratio of claims to
premiums was about 130 during this period, which was active in that it did include two major damaging events:
the 9 February 1971 San Fernando earthquake in southern California of magnitude 6.6, and the 17 October
1989 Loma Prieta earthquake in northern California of magnitude 6.9. But despite the dataset including these
two severe earthquakes, no extreme value statistical analysis could have prepared insurers for the enormous
loss ratio of 2273 which resulted from the Northridge earthquake of 17 January 1994. That such an earthquake
of magnitude 6.7 should be capable of claiming some local insurance companies among its victims highlights
the inadequacy of reliance on historical loss experience alone.

Occurring within a decade of the inception of catastrophe risk modelling, this was one of the seminal disasters
to have forged its market development. At the core of catastrophe insurance risk modelling is the introduction
of physical structure into the modelling process. There is very much more knowledge about earthquake risk
than the particular set of realized historical losses. This seismological and earthquake engineering knowledge
is embedded within a stochastic set of possible future earthquake scenarios, each of which is assigned an
annual frequency.

Even if advised of alarming loss outcomes of an ensemble of future stochastic event scenarios, insurance
market sentiment is heavily weighted by actual loss experience itself. As social psychologists would
appreciate, more weight is given by insurers to what has actually happened in the past, than what
hypothetically might happen in the future. Counterfactual analysis of past events should be rather less
susceptible to human bias, since it is basically rooted in what has happened before.

An issue often raised about catastrophe modelling is the degree of completeness of the stochastic set of future
scenarios, and how much scope there remains for surprises. It is argued here that insurance risk managers
would be less exposed to potential surprise over future insurance loss outcomes if a counterfactual stochastic
analysis were undertaken of the past, rather than treating historical events as deterministic and past loss
experience as immutable data. lllustrations will be drawn from a range of catastrophe insurance markets.



2. SYSTEM STATE REPRESENTATION

Whereas scientists are interested in all event phenomena, insurers are specifically concerned with that subset
of events that cause losses. Catastrophe modelling focuses on the probability of an event occurring, and the
conditional loss probability given an event occurrence. On its own, this can be rather a superficial
phenomenological description. More fundamentally, the risk state of the whole dynamical system can be
represented by a set Sof n underlying natural and human risk variables, some of which are physical or
geographical, and some relate to organizational system defence and control: ~ § = {X (1), X(2)....X(n)}.

At various times {, a particular domain, D(t), of the space of underlying risk variables becomes immediately
dangerous to an insurance risk portfolio in that the hazard state changes in latency from passive to active,
and some external agent of physical force strikes the portfolio. Such an agent might be earthquake ground
shaking, volcanic pyroclastic flow, landslide debris flow, wind pressure of a tropical cyclone or tornado, water
breach of a flood or tsunami defence, toxic release from an industrial installation, or a terrorist bomb blast.

As observed by an insurer at his office desk, a hazard event occurs at time t causing loss L(t) to the insured
portfolio. From an actuarial perspective, the historical time series of occasional losses L(t) can be analysed
by a battery of statistical techniques. However, given the rarity of extreme catastrophe insurance losses, and
the sparseness of the loss time series, any statistical analysis just relying on loss experience is fraught with
huge uncertainty, the size of which is well appreciated by actuaries and is a source of anxiety (Nicholson et
al., 2013). Indeed, it has often been stated of US terrorism insurance risk that it is impossible to estimate the
frequency since 9/11 because of the almost total absence of actual insurance loss experience. According to
the American Insurance Institute, terrorism risk is uninsurable without government support through the
Terrorism Risk Insurance Act.

Fortunately, loss statistics are far from being the only source of useful information and knowledge about a
hazard. Indeed, it is the catastrophe modeller's responsibility to understand, measure and chart the extent of
the dangerous domain of risk variables D(¢). In particular, there are combinations of the input variables

{X (1), X(2)....X(n)} which lie just outside this dangerous domain, but which may be dynamically perturbed

to fall within the dangerous domain (see Fig.2). Relaxation of safety and risk management controls augment
the perturbative impact of any reduction in physical safety distance.

The future stochastic event datasets constructed within catastrophe risk models explore and chart the
dangerous domain D(t) of risk variables. However, it is not customary for catastrophe modellers to attempt
to undertake stochastic modelling of past historical events, which are treated as fixed inflexible data. Gauging
the uncertainty in estimating the insurance loss of any event is an important task intrinsic to catastrophe
modelling, but not undertaking a stochastic analysis of the event itself.

But interesting insights into the dangerous domain of risk variables, D(t) can be gained from revisiting and
rewriting virtual history (Ferguson, 2000). In particular, salutary lessons may be learned from the
counterfactual insurance losses that were narrowly averted or diminished because of the haphazard absence
of the necessary dynamic perturbations to near miss events.

Insights into the geometrical configuration of the dangerous domain emerge from considering the
circumstances in which organizational system defence and controls manage to counter the reducing physical
safety distance of a physical hazard variable, and create a resilient response to the threat of casualties and
property loss. Marginal parameter variations that significantly amplify catastrophe loss are important to
tabulate and chart. There are numerous sources of nonlinear loss amplification, corresponding to tipping
points in hazard, vulnerability and loss aggregation.

A wide range of natural and man-made catastrophes could be taken to illustrate the principles. With respect
to wildfire risk, for example, the number of fire ignitions is a crucial risk parameter. In the 1991 East Bay Hills,
California, wildfire storm, the fire started on 19 October, and by nightfall was being brought under control.
However, a new ignition the following morning rapidly spread the wind-driven fire, overwhelming local and
regional fire-fighting crews. More than 3,800 homes were destroyed and 25 people were killed.

The FEMA report (1991) on the wildfire noted candidly that ‘the most significant factor that should be
recognized from this incident is that the fire was beyond the capability of fire suppression forces to control.



The stage was set by a number of contributing factors that created the opportunity for disaster. When the
Santa Ana wind condition was added to those risk factors, the combination was more than any fire department
could handle.

It was remarked by one fire official that if the same fire risk factors had been present in a park or forest, the
area would have been closed to all activities. As long as the wind was present, the fire was going to continue
to spread, no matter what strategy and tactics were used and no matter how much equipment and how many
firefighters were there to try to stop it. The fire was contained only when the wind changed'.

A counterfactual analysis of this major US wildfire insurance disaster is especially illuminating for what it
indicates for an estimate of wildfire Probable Maximum Loss. A runaway disaster might have ensued through
a ‘perfect storm’ combination of three risk variables X (1), X(2), X (3) : persistent hot dry northeasterly winds;

fresh ignitions, (either accidentally or maliciously generated); fire-fighting crew fatigue and resource
restrictions.

Identification of comparable ‘perfect storm’ counterfactual analyses for historical realizations of other perils
would reduce the prospect for surprise at future catastrophe insurance loss. Extreme persistent rainfall can
greatly exacerbate flood insurance loss, as shown by the Central Europe floods of August 2002. A
combination of sustained low pressure and comparatively high summer temperatures were the key risk
variables that generated the meteorological conditions for a fountain of water deluging multiple European
states, without heed of national borders. For other major historical catastrophe insurance events, much
would be gained, both intellectually and financially, from the identification of the key risk variables that would
have worsened still further the degree of insurance loss.

Physical Safety Distance

I

{ X(1), X(2),....X(n)}

Organizational Safety Distance (System Defence and Control)

Figure 2: Perturbation of a system state into the dangerous domain D(t), through attrition of the physical and
organizational safety distances

Part of the risk management value of counterfactual disaster analysis is the capacity to identify prospects for
future disasters, even where the historical evidence is very sparse or completely non-existent. There are
numerous examples in public transportation by land, air and sea. They provide some of the most graphic and
hair-raising near miss scenarios. In attempting to land at Heathrow in thick fog on 21 November 1989, a
Boeing 747 missed the roof of a local airport hotel by a clearance distance of just twelve feet (Macrae, 2010).

Take the more recent maritime insurance example of the Costa Concordia cruise ship which sailed up the
northwest coast of Italy, past the island of Giglio (see Fig. 3). One of the key hazard variables determining
the ship’s hazard state was its distance (in kilometres) from the navigational safety contour around the island.
This might be designated, without loss of generality, as X '(1). The official scheduled route of the cruise ship

gave the island an abundantly wide berth, X'(1) > 10 kilometres. Given the terrestrial accuracy of GPS



expressed within metres, the dangerous domain should never have been close to being breached, even
allowing for gross human navigational error.

However, a tradition had developed for the Costa Concordia to be steered intentionally very close to the safety
contour to maximize the spectacle for islanders and cruise ship passengers alike - so that X' (1) ~ 0. This

then left virtually no margin for the navigational failings that would take the Costa Concordia within the
dangerous sinking domain, as happened on the fateful evening on 13 January 2012. With the burgeoning
costs of the lengthy engineering salvage operation, this became the worst maritime insurance loss, exceeding
$2 billion. A counterfactual analysis would have warned of the risk of such a catastrophe loss.

COSTA CONCORDIA'S PREVIOUS NEAR MISS
Lloyd’s List Intelligence data calls into question Costa Crociere's account of previous routes near
Island of Giglio

" Voyage on January 13th, 2012
(Day of grounding)
W Voyage on August 14th, 2011

Avoyage on August 14th,
2011 travelled within
230m of the shore line

Approximate incident location

The same voyage also travelled
along a very similar path to the
January 13th voyage

Sourced from Lloyd'’s List Intelligence’s loand based
F radio receivers, part of our proprietary network throug
Island of Giglio which we monitor global shipping.

Visualisation created using Tobleau

Figure 3: Track detours near the island of Giglio of the Costa Concordia on 13 January 2012 and 14 August,
2011, based on Lloyd'’s List maritime intelligence data.

This catastrophe insurance loss was man-made. The detour was intentional, even if the grounding of the
cruise ship was not. Consider next an intentional man-made disaster, caused by terrorists. On 26 February
1993, there was a terrorist vehicle bomb attack on the New York World Trade Center. The WTC shook
violently but did not collapse. But it was a near miss. According to courtroom evidence of the WTC's architect,
corroborated by an FBI explosives expert, if the van had been left closer to the poured concrete foundations,
the terrorists would have succeeded in causing tower collapse. Peripheral damage to adjacent buildings
would then have also been substantial.

As it was, the 1993 terrorist bombing of the WTC shut down Tower 1 for six weeks and Tower 2 for four weeks.
The total insurance loss, including property and equipment damage and loss of revenue, was about $500
million; approximately two orders of magnitude less than that caused by the Al Qaeda terrorist attack on 9/11,
masterminded by the uncle of Ramsi Yousef, the 1993 bomber. Defining as the distance of the terrorist van
bomb from the optimal location for causing building collapse, a comparatively minor perturbation to the terrorist
plot could have gained the extra leverage in force-impact ratio that is a hallmark of terrorism modus operandi,
and would have greatly amplified the insurance loss to catastrophic proportions. Explicit counterfactual
disaster analysis of the 1993 attack would have better prepared the terrorism insurance market, both in respect
of underwriting and risk management, for the horrific losses of 9/11, which established terrorism as a US
catastrophe insurance peril for the first time — the actual 1993 loss fell below the catastrophe threshold.



3. COUNTERFACTUAL STOCHASTIC SIMULATION OF THE PAST

Stochastic simulations are routinely done for the future, but rarely for the past. However, there are important
risk management lessons to be learned from exploring alternative realizations of virtual history, especially
understanding the degree of loss variability of past events. Regarding past losses as determinate without
stochastic analysis of historical loss variability, the potential scale of variability in future loss projections could
take insurers by surprise. There is a substantial epistemic component due to lack of reliable information about
building vulnerability, and insufficient knowledge of failure engineering, as was the case with the 1994
Northridge earthquake. But insurers also need to be reminded that there is also a significant aleatory
component to loss due to the sheer randomness of events.

As a salient example of how a minor random perturbation to the system state can have a massive impact on
insured loss, the case study of the Al Qaeda attack on the In-Amenas gas plant in Algeria in January 2013 is
particularly notable. A stray terrorist bullet accidentally caused a power blackout that automatically shut down
the plant (Statoil, 2013). This was a stroke of good fortune because it prevented the terrorists from achieving
their goal of setting off a massive gas explosion on site. This event is since known for being a hostage crisis,
but, counterfactually, it could have been a massive petrochemical disaster as well. In this example, the status
of the on-site power supply was a crucial state hazard variable governing the scale of loss. By lucky accident,
this hazard variable was set to the safe value through random terrorist action itself.

This case study illustrates a key principle. Even though the multi-dimensional space of n risk variables
X (1), X(2)....X(n) has a complex multivariate topology, important insight can be gained from the marginal

variation of individual or several variables. Thus the binary switch of on-site power could leverage loss at a
petrochemical plant by orders of magnitude. = Power-outage is well appreciated to be a key variable for
estimating the scale of business interruption, especially where industries lack supply chain resilience against
external hazards. Power loss was a major factor impeding the 24 hour production schedule of computer
microchips after the Chi-Chi earthquake in Taiwan of 21 September 1999 (RMS, 1999).

In the realm of meteorological loss amplifiers, a notable marginal variable is the state of the tide. Consider
coastal flooding. The state of the tide is a key variable for coastal flooding from a storm surge or tsunami.
Overtopping of a coastal sea defence defines a key boundary of the dangerous domain. The historical record
provides numerous examples of calamitous coastal flooding being averted, or the insurance loss severity
being considerably mitigated, by a combination of stout sea defences — and luck that the highest hazard level
did not coincide with high tide. In October 2012, Superstorm Sandy struck Boston at low tide, but up to 6%
of Boston could have been flooded if Sandy had arrived at high tide (Douglas et al., 2013). Four months later,
a four-foot storm surge hit Boston, fortunately again at low tide, not high tide. With the high tide already a foot
higher than average because of the new moon, coincidence of the storm surge with this high tide would have
given rise to the 100-year flood.

As an illustration of the value of structured physical modelling to elucidate the characteristics of the dangerous
domain D(t), consider the problem of calculating probabilistic risk curves for the overtopping of coastal sea

defences. This hydrodynamic modelling exercise needs to be addressed taking account of dynamic
interactions between the tide and the external forcing variable, which may be a storm surge or tsunami
(Kowalik et al., 2010).

The use of statistical resampling methods, such as the bootstrap, for estimating uncertainty in extreme value
analysis of hurricanes and other weather hazards was advocated in 2003 by Coles and Simiu. But no amount
of resampling of the hurricane wind speed database before 2005 could have forewarned of the catastrophe
insurance loss of Hurricane Katrina in August 2005. On the hand, a counterfactual analysis of hurricanes
Georges in 1998 and Ivan in 2004 would have been more effective in preparing insurers for the record-
breaking losses to come. As such, counterfactual analysis of historical events is an important supplementary
tool for uncertainty assessment.



3.1 EARTHQUAKE HAZARD

There are so many random aleatory components to earthquake hazard that perhaps it is unsurprising that
some communities in seismic zones have developed a fatalistic attitude towards earthquake danger. Take
time of day, for example. This is a crucial parameter governing the casualty rate in earthquakes, and therefore
workers compensation insurance. lItis well known that fatalities in the two most recent destructive earthquakes
in northern and southern California have been remarkably light. Fortuitously, the Loma Prieta earthquake of
17 October 1989 occurred at 5pm, during warm-up for the baseball World Series. Baseball fans who were
watching on television might otherwise have been endangered in offices or on the freeways that collapsed.
Likewise, offices and freeways in the Los Angeles area were mostly empty when the Northridge earthquake
of 17 January 1994 struck early in the morning at 4.30am.

Another important hazard variable X for earthquake insurers is the location of rupture initiation on a major
active fault. In probabilistic seismic hazard analysis, this variable is typically represented as uniformly
distributed along the fault length. This is a geographic variable that has a substantial influence on the spatial
footprint of strong ground motion, and hence on the insurance loss of a portfolio located in and around this
footprint. This is exemplified by the first major international earthquake catastrophe insurance loss: the great
San Francisco earthquake and fire of 18 April 1906. Severe as the insurance loss was, fortunately for the
earthquake insurers - and perhaps for the future of the global earthquake insurance market - the loss was not
nearly as bad as a counterfactual analysis indicates it might have been.

The 1906 event was ‘the Big One’, but, as shown on the left of Fig. 4, the red zone of strongest shaking was
away from the city of San Francisco, close to the rupture initiation point, marked by a star in Fig. 4.
Fortunately, the shaking in 1906 in San Francisco was relatively weak compared to what might have been.
Much worse would have been ‘The Bad One’, as illustrated on the right of Fig. 4, where the rupture might
have initiated at the northern end of the San Andreas Fault, and propagated southeastwards towards the
San Francisco Bay area, focusing seismic wave energy in a red zone of especially high risk accumulation.

Figure 4: Contrast in damage patterns for two earthquake scenarios ['The Big One’ at the left; ‘The Bad One’
at the right] on the San Andreas Fault, as mapped by the US Geological Survey. The red zone suffers extreme
ground shaking and damage. Black stars indicate the initiation point of the fault rupture.



There are other counterfactuals that are important for earthquake insurers to comprehend. Consider a
situation where a major metropolis is situated within an active fault zone. Seismological studies of past
regional earthquakes may provide evidence that the associated fault rupture from a previous regional
earthquake stopped well short of this metropolis. But instead of complacency over the seismic safety of the
metropolis, a counterfactual attitude towards this historical near miss would be to focus attention on managing
the risk associated with an extension of the fault rupture zone towards the metropolis.

A significant catastrophe insurance example is the devastation of the city centre of Christchurch, New Zealand,
by a magnitude 6.3 earthquake on 22 February 2011, that was likely dynamically triggered by the larger
magnitude 7.1 Darfield, Canterbury, earthquake of 4 September 2010. The specific characteristics of the
seismological connection between these two major South Island events, in particular whether the latter
earthquake might be considered an aftershock of the former, was not only a matter of dispute within the
seismological community, but also became a highly contentious issue of reinsurance law.

3.2 INTERDICTION OF TERRORIST PLOTS

A salutary risk management lesson that may be learned by insurers from a counterfactual disaster analysis is
how fortunate they may have been to have survived a number of near misses without incurring a significant
loss. US terrorism risk in the decade after 9/11 is instructive in this respect. In the countries of the western
alliance, counter-terrorism and intelligence capabilities are very strong, and surveillance of terrorist activities
is extremely wide-ranging, intensive and indiscriminate, as the former intelligence staff member Edward
Snowden has publicly revealed. Accordingly, in the western alliance, terrorists cannot attack at will, and the
great majority of terrorist plots are interdicted, so substantially mitigating the terrorism insurance risk.

For the man-made peril of terrorism in Europe and North America, one of the most important hazard variables
is the interdiction rate of terrorist plots. This interdiction rate is a function of the plot size, as gauged by the
number of operatives involved (Woo, 2011). The more operatives involved in a plot, the greater is the chance
that one of them will be placed under individual surveillance. The security services track the contacts of known
or suspected terrorists. In spider-web fashion, they also track the contacts of these contacts etc.. Social
network analysis of surveillance webs indicates a high probability of about 95% that any ambitious plot
involving ten operatives would be interdicted. This is consistent with the injunction from Osama bin Laden in
Abottabad that plots against the US homeland should involve at most ten operatives.

In the decade after 9/11, there were thirty significant US terrorist plots confirmed by courtroom convictions.
For each of these plots, the chance of the plot being interdicted can be calculated from the number of
operatives involved. Contingent on a plot evading interdiction, the likelihood of the plot succeeding
technically to cause insurance loss can then be estimated. Summing over the thirty confirmed plots, a
counterfactual estimate of the expected number of loss-generating plots during this decade is about four.
US terrorism insurers contemplating their benign underwriting experience over this decade should not forget
the three terrorists in maximum security prisons who nearly caused catastrophe insurance loss: the airline
shoe-bomber, Richard Reid, in 2001, the airline underpants bomber, Umar Farouk Abdulmutallab, in 2009,
as well as the Times Square vehicle bomber, Faisal Shahzad, in 2010. Counterfactually, with better trade-
craft, modest changes to the ignition systems of these improvised explosive devices could have amplified
insurance losses to catastrophe proportions.

3.3 VOLCANIC UNREST

In volcano catalogues of eruptions, it has not been routine practice to include periods of unrest. These are
times when scientific observations have been made of some external signs of activity, other than eruptive
activity itself. Observations of unrest might include volcanic tremor, gas emissions, and inflation of the flanks
of the volcano. This incompleteness of information reflects the traditional perception that such data are of
scientific interest, but rather inessential for hazard estimation, which is primarily dependent on the geological
and historical time series of the actual eruption events themselves.



However, most volcanoes have a low frequency of eruption, and such periods of unrest are important
indicators of failed eruptions which should be taken into account in volcano hazard assessment. If periods of
unrest are not adequately documented or taken into account, volcano hazard assessment may be warped by
the absence of eruptive activity for hundreds or even thousands of years, which may give a misleading
impression to insurers and civil protection authorities alike that the volcano is in a quiescent and safe dormant
state.

Soufriére Hills in Montserrat is a prime example of a volcano which, until 1995, had not erupted for almost four
hundred years, yet had given rise to three periods of significant unrest over the previous century. These might
be interpreted as failed attempts at eruption, and might have been recognized as such in volcano risk
assessments for general public planning purposes, as well by insurers. As it was, the government of
Montserrat granted land on a hazard-prone site for a medical school campus of the American University of the
Caribbean. Classes started in 1980, were interrupted by Hurricane Hugo in 1989, and closed six years later
when the volcano erupted.

Key system state variables for volcano hazard include those governing the subterranean dynamics, e.g. the
influx of magma into the magma chamber feeding the volcano. Periods of unrest may correspond to
intermittent intrusions of magma which are insufficient to lead to eruptive activity. Symptoms of unrest may
be detected from scientific monitoring of the underlying geophysical, geochemical and geodetic causal factors.
This evidence can then be processed probabilistically, incorporating expert judgements, using a Bayesian
Belief Network framework (Hincks et al., 2014).

For the i'th historical period of unrest , a Bayesian Belief Network can generate an estimate of the
counterfactual likelihood that the unrest might lead to an eruption . With these likelihoods evaluated, the
annual probability of an eruption can be calculated in terms of the duration covering all the unrest periods as:

Pr(E) =Y PHE|U,)/T

For Montserrat, the duration T is the century from 1890 to 1990, during which there were three distinct
episodes of unrest in the 1890s, 1930s and 1960s. Based on the information available, the likelihood
summation over the three unrest episodes is approximately 1. Hence a baseline annual eruption frequency
would thus have been about 1%, which is higher than using the elapsed time to the last eruption in 1630.
Accordingly, this approach would have yielded a more pessimistic, but ultimately more realistic, assessment
of volcanic hazard at the island capital Plymouth, which was destroyed by a pyroclastic flow in 1997.

In the authoritative Smithsonian Institution catalogue of volcanoes of the world (Simkins et al., 1994), which
was published shortly before the eruption in 1995, the 1630 eruption is included as the sole entry for Montserrat
- but none of the unrest history is listed. A counterfactual analysis of this unrest history would have been very
instructive for insurers of property on this volcanic Caribbean island, and might have helped avert acrimonious
insurance dispute in the law courts over whether the surprising volcanic eruption might be considered, with a
rather oblique interpretation of insurance contract language, as an ‘explosion’.

4. COUNTERFACTUAL PERSPECTIVE ON UK NATURAL HAZARDS

The 2014 southern England floods, associated with the wettest winter in England and Wales for almost 250
years, illustrate how a single hazard variable, namely the prolonged and sustained duration of rainfall, can
cause a system to move into a state deep within the danger domain. Flow rates on the River Thames remained
exceptionally high for longer than in any previous flood episode since 1883. Correspondingly, floodplain
inundations were extensive and protracted (Met Office, 2014).

The clustering and persistence of the winter storms was highly unusual. A rare tipping point was reached with
the consequent saturation of the ground, whereafter even when there was a lull in the rainfall, the flood waters
did not recede much and some properties remained flooded for many weeks. Such tipping points are
dangerous insurance loss amplifiers. ldentifying them well in advance is a principal objective of counterfactual
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insurance disaster analysis. For coastal flood risk associated with storm surges arriving on a high tide, failure
of key sea defences is a major insurance loss tipping point.

The windstorm on 4 and 5 December 2013 generated a major North Sea storm surge, which coincided with
one of the highest tides of the year and threatened much of the East coast in a similar way to the destructive
1953 flood, which claimed 307 lives in English coastal towns. However, with improved coastal defences,
major damage was avoided. Crucially, the Thames Barrier was successfully raised to protect London from the
largest tide ever recorded at Southend. Counterfactually, technical inoperability of the Thames Barrier would
have caused disastrous flood loss within the city of London, which otherwise escaped the inundation havoc in
neighbouring districts.

A tipping point in health risk can arise from the occasional confluence of two independent risk factors. As a
natural hazard affecting the health of the UK population, a sustained volcanic eruption in Iceland, generating
vast quantities of toxic gases, can have serious consequences for those with respiratory problems. The Laki
eruption in Iceland of 1783 lasted eight months, during which about 14 cubic metres of lava were erupted.
The resulting acid fog dispersed over Europe caused more than 10,000 excess deaths in England. But it
could have been much worse. In the previous year, 1782, a pandemic originating in China spread westwards,
through Germany into England and Scotland. Had the pandemic occurred a year later, (or Laki erupted a year
earlier), the combination of influenza and acid fog would have leveraged the death toll to catastrophic levels.
This counterfactual ‘perfect storm’' scenario almost happened with the arrival of the swine flu pandemic from
Mexico in 2009. Had it occurred a year later, it would have coincided with the eruption of the Iceland volcano
Eyjafjallajokull in 2010, the ash cloud from which closed down UK airspace for days.

5. EMERGING CATASTROPHE INSURANCE RISKS

Emerging insurance markets, such as in Asia, introduce emerging catastrophe insurance risks. The 2011
Thailand floods generated insurance losses in excess of $10 billion, which came as a financial shock and
surprise to the developing Asian insurance market. At the time, catastrophe insurance modelling for Thailand
flood was still rather rudimentary. Nevertheless, in estimating Probable Maximum Loss, it is always possible
to undertake an exploratory search for risk variables that have the capacity to leverage losses greatly. The
discharge of water from dam reservoirs defines an almost literal tipping point for the amplification of
catastrophe insurance loss in Thailand. This might have been foreseen from a counterfactual perspective.

Actual loss experience has always been the foundation for actuarial risk analysis. Where losses are frequent,
e.g. motor insurance claims, the actual database of losses is large enough to encompass most of the domain
of realistic possibility. Risk insights can then be gained through extensive statistical data mining. However,
especially for emerging catastrophe insurance risks, actual catastrophe loss experience, especially when it
has been light or even non-existent, may be very misleading, and expose underwriters to risk perception bias.

There is an intrinsic insurance market optimism bias which leads insurers to underestimate risks if large losses
have not yet materialized. Such social psychological behaviour is explained by market dynamics. The market
players who are particularly optimistic that a low loss regime will prevail will tend to have increasing market
share. As a consequence of optimism bias, when a catastrophe loss does occur, the market is often taken by
surprise. The degree of surprise would be lessened if emerging risks were tracked early and managed well
in advance of any catastrophe event. Counterfactual analysis of emerging risks would be helpful in this
tracking and risk management process. To enlarge the historical event dataset of emerging risks, a stochastic
analysis of historical events can be undertaken to explore the range of possible losses that might have arisen.

Such analysis is already instructive for assessing terrorism risk. But it could also be applied in allied insurance
domains such as riot and cyber risk. Criminals other than terrorists launch cyber attacks. Cyber risk is an
emerging global risk which has yet to cause a catastrophic property insurance loss, although the possibilities
are both numerous and worrying. Through cyber action, for example, Internet-enabled Supervisory Control
and Data Acquisition (SCADA) systems could be sabotaged, leading to fires and explosions in industrial
facilities. According to a Symantec report (Wueest, 2014), companies in the energy sector are facing a growing
risk of having their services interrupted or losing data. The threat to energy firms is likely to increase in the
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coming years as new developments, such as further extensions of smart grids and smart metering expose
more infrastructure to the Internet.

The lurking prospect of a SCADA disaster has already existed for a decade. At the beginning of 2003, a marine
terminal in Venezuela was targeted by a sabotage attack (Wueest, 2014). During the strike, an attacking group
managed to get access to the SCADA network of the oil tanker loading machinery and overwrote
programmable logic controllers (PLCs) with an empty program module. This halted machinery, preventing oil
tankers from loading for eight hours until the unaffected backup code was reinstalled on the PLCs. The attack
was fortunately not too sophisticated, as it was easily spotted. Counterfactually, a smail modification of the
PLC code instead would probably have gone unnoticed for a long time, and caused substantial damage and
business disruption.

Liability risk is another emerging catastrophe insurance risk where counterfactual analysis of historical events
can elucidate loss potential and improve risk quantification. Stochastic simulation of past liability loss events
would help benchmark and refine the capability of early warning tools developed for catastrophe liability
insurance. As an example of marginal parameter variation, delay in ordering product recalls early is a risk
parameter that can amplify losses enormously. In 2014, GM finally ordered a recall of older compact cars
over an ignition switch problem that was suspected as much as ten years earlier. From mechanical failures
to health and environmental problems, counterfactual analysis of earlier incidents provides insurers with
additional insights beyond the narrow bounds of actual loss experience.
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