

Institute of Catastrophe **Risk Management**

Automatic Urban Building Area and Height Extraction using High Resolution Satellite Imagery – Taipei, Jakarta & Bangkok Edmond Y.M. Lo, Tso-Chien Pan and V. Daksiya

Institute of Catastrophe Risk Management, NTU, Singapore

3D-Building Reconstruction using Remote Sensing Data Satellite Images & Aerial Photos Generate Point Cloud 2 Generate DSM & DEM Kuo-Shih Shao, En-Kai Lin, Yi-Rung Chuang and Kuan-Yi Lee

Disaster Prevention Technology Research Center Sinotech Engineering Consultants, Inc., Taipei, Taiwan

- Asia has the largest growth of real assets, and for 2017, 21 of the world's 35 megacities are located in Asia
- Asia has historically suffered the most from catastrophic (Cat) events, but has the least amount of safety net or risk transfer mechanisms
- While insurance industry could significantly contribute in mitigating the impact of natural catastrophes, effective Cat risk financing solutions need robust models and data, including

exposure data models, to quantify the Cat risk

- This effort aims to develop a high resolution exposure model (geometric characteristics) of building structures in cities via high resolution satellite imagery
- The image processing incorporating a high degree of automation is demonstrated for Taipei (TPE), Jakarta (JKT) and Bangkok (BKK)

Building Footprint & Height Extraction

Input	Purpose	Output
DSM(Digital Surface Model)	Generate OHM(Object Height Model)	Building footprint via segmentation on Object Height Model (OHM) or ortho-image (for low buildings). Building height via OHM values over extracted building footprint
Multispectral satellite image	Generate NDVI (Normalized Difference Vegetation Index) to filter out vegetation area	
Open Street Map road data	Generate road buffer to filter out road area	
Ortho-rectified Image	Building footprint for low bldgs	

Classification Results: Extracted Polygons vs Ground Truth

- Larger polygons with larger Total Floor Area (TFA) well extracted with Case 2 (one-to-one) classification at 70% and Mean Absolute Error in TFA at <18%
- Case 3 (1 extracted to multiple) further corresponds to closely spaced buildings which are very similar in height and structurally, and thus in vulnerability

Таіреі	TFA < 8,000m ²	TFA 8,000 - 16,000m ²	TFA ≥ 16,000m ²
MAE in TFA	<42%	<18%	<15%
Coeff of Variance	<1.3	<2.7	1.6
% of Case 2	50%	70%	75%
% of polygons	92%	5%	3%
Jakarta	TFA < 2,500m ²	TFA 2,500 - 8,000m ²	TFA ≥ 8,000m ²
MAE in TFA	<50%	<31%	<23%
Coeff of Variance	<1.0	<4.7	<4.0
% of Case 2	50%	85%	85%
% of polygons	92%	5%	4%
Bangkok	TFA < 4,000m ²	TFA 4,000 - 8,000m ²	TFA ≥ 8,000m ²
MAE in TFA	<57%	<22%	<18%
Coeff of Variance	<1.3	<1.8	2.2
% of Case 2	56%	74%	75%
% of polygons	88%	6%	6%

Extracted (yellow) and Taipei Vector Data (ground truth, red)

Total No. of extracted BFT

Case 1

Case 2

Case 3

Case 4

Case 5

Case

Description

1 to 0 (extra)

1 to 1

multiple

Multiple

Average storey height of 3.45m is used to convert height to no of storeys in TFA calculation.

Summary

- Larger buildings comprise ~10% of building count and 45%, 75% & 70% of the total TFA for TPE, JKT & BKK respectively. These building are well captured by the developed image processing.
- Small building comprise bulk of building count (~90%) and 55%, 25% & 30% of the TFA of all buildings for TPE, JKT & BKK respectively and are less well captured.
- Simulation using portfolios comprising all the buildings as reflecting observed count and TFA distributions show that the portfolio mean TFA error is <4% (CV <1), <7% (CV<1.4) & <6% (CV <1) for TPE, JKT & BKK respectively.
- The developed exposure building model thus well represents building portfolio values suitable for insurance purposes.

Contact Us:

Executive Director, ICRM (ExecDir-ICRM@ntu.edu.sq) N1-B1b-07, 50 Nanyang Avenue, Singapore 639798 Tel: +65 6592 1866 Website: http://icrm.ntu.edu.sg

Natural Catastrophe Data Analytics Exchange

NatCatDAX Consortium Partners

www.ntu.edu.sg