COURSE OUTLINE

Academic Year	AY2019-2020)	Semester	2			
Course Coordinator	Dr. Foo Yi Sh	yh Eddy					
Course Code	EE4534						
Course Title	MODERN DIS	10DERN DISTRIBUTION SYSTEMS WITH RENEWABLE RESOURCES					
Pre-requisites	Before AY2021-22 Sem2:	2 EE3010 Electrical Devices & Machines and EE3015 Power Systems & Conversion					
	AY2021-22 Sem2 and onwards:	EE3010 Electrical Devices & Conversion <u>or</u> EE2005 Electrical Devices & Conversion		,			
No of AUs	3						
Contact Hours	Lectures: 26	hours, Tutorials: 12 hours					
Proposal Date	5 March 202	0 (REF#ACC-CN-2020/06_ITN	I-02)				

Course Aims

This course deals with the operation of modern electric power distribution systems, which are increasingly being connected with renewable energy sources. It discusses many overriding factors, particularly system efficiency and cost-effectiveness. In addition, power quality issues are addressed with specific focus on the impacts on modern electronic appliances and renewable generations. Greater emphasis is also given to the two widely tapped clean energy sources of solar and wind. The course aims to equip students with the fundamentals of renewable energy sources through comprehensive coverage of energy conversion processes to their applications. The topics taught complement the understanding of power distribution systems with integration of renewable energy sources and their impacts on each other. The knowledge gained will prepare students well when they embark on careers involving electrical power distribution or in consulting companies. The course is also an excellent starting point for pursuing graduate studies in renewable energy technologies and power quality.

Intended Learning Outcomes (ILO)

Upon the successful completion of this course, you should be able to:

1) Apply the relevant technical concepts in the design and operation of distribution systems.

- 2) Identify and describe the operational aspect of renewable energy generations, and the various issues pertaining to their interconnections to the distribution grids.
- 3) Identify and explain the options available for ensuring the continuity of electricity supply and a power quality that is commensurate with the needs of electrical equipment.
- 4) Describe economical aspects of electricity generation and usage besides the technical issues.

Course Content

Operation of distribution systems. Power quality. Solar power systems. Wind power systems.

C	Course	Outline		
	S/N	Торіс	Lecture	Tutorial
			Hours	Hours

1	Operation of Distribution Systems	6	3
	Distribution network configurations. Planning criteria and network		
	design. Load management. Energy losses and power factor control.		
	Industrial energy conservation. Electricity tariff. Maximum demand management.		
2	Power Quality	8	3
	Voltage sags, swells and interruptions. Voltage sag mitigation techniques. Voltage fluctuation and imbalance. Harmonic distortions. Harmonic filter design. Power quality solutions.		
3	Solar Power Systems	6	3
5	Introduction to renewable resources. Solar radiation. Insolation. Solar collectors. Photovoltaics. Cell characteristics. Series and parallel connection of PV cells. Maximum Power Point Tracking. Grid connection.	Ū	5
4	Wind Power Systems Energy and power in wind. Induction and synchronous generators. General characteristics of wind resources. Power converter control. Speed control for maximum power.	6	3
	Total hours	26	12

Component	Course LO Tested	Related Programme LO or Graduate Attributes	Weighting	Team/ Individual	Assessment rubrics
1. CA1 – Quiz #1	2	EAB SLO* a, c	10%	Individual	
2. CA2 – Quiz #2	1,3	EAB SLO* a, c	10%	Individual	
3. CA3 – Homework Assignment #1	2	EAB SLO* a, b, c	10%	Individual	
4. CA4 – Homework Assignment #2	1,3,4	EAB SLO* a, b, c	10%	Individual	
5. Final Examination	1,2,3,4	EAB SLO* a, c	60%	Individual	
Total		•	100%		

Course Student Cat EAB's 12 Graduate Attributes*													
Learning Outcomes	Cat	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(I)
EE4534 Modern													
Distribution System	Major-												
with Renewable	PE		U	-									
Resources													

1.	Apply the relevant technical concepts in the design and operation of distribution systems.	EAB SLO* a, b, c
2.	Identify and describe the operational aspect of renewable energy generations, and the various issues pertaining to their interconnections to the distribution grids.	EAB SLO* a, b, c
3.	Identify and explain the options available for ensuring the continuity of electricity supply and a power quality that is commensurate with the needs of electrical equipment.	
4.	Describe economical aspects of electricity generation and usage besides technical issues.	EAB SLO* a, b, c

Legend: • Fully consistent (contributes to more than 75% of Student Learning Outcomes)

• Partially consistent (contributes to about 50% of Student Learning Outcomes)

- O Weakly consistent (contributes to about 25% of Student Learning Outcomes)
- Blank Not related to Student Learning Outcomes

Formative feedback

These are the forms of feedback that you can expect in the course:

Your exercises in tutorial classes;

Examination results;

Markers' report on overall examination performance;

Quizzes scores and answers / solutions / explanations provided in tutorial/lecture classes;

Assignment scores uploaded on course site.

Approach	How does this approach support students in achieving the learning outcomes?
ECTURE	Lectures and lecture materials cover all topics
TUTORIAL	Classroom discussions on tutorial questions and related topics

Reading and References		
TEXTBOOKS		

- 1. Pabla A S, <u>Electric Power Distribution</u>, 6th Edition, McGraw-Hill, 2011. (TK3001.P112e 2011)
- Masters Gilbert M, <u>Renewable and Efficient Electric Power Systems</u>, 2nd Edition, John Wiley, 2013. (TK1005.M423 2013)

REFERENCES

- 1. Dugan Roger C, McGranaghan M F, Santoso S and Beaty H Wayne, <u>Electrical Power Systems Quality</u>, 3rd Edition, McGraw-Hill, 2012. (TK1010.D866 2012)
- 2. Boyle Godfrey, <u>Renewable Energy: Power for A Sustainable Future</u>, 3rd Edition, Oxford University Press, 2012. (TJ808.R411re 2012)

Course Policies and Student Responsibilities

General:

You are expected to complete all tutorial questions and take-home assignment by due dates. You are expected to take all quizzes. You are expected to take responsibility to follow up with course notes, assignments and course related announcements. You are expected to actively participate in class discussions.

Continuous assessments:

You are required to attend all continuous assessments.

Absenteeism:

Continuous assessments make up a significant portion of your course grade. Absence from continuous assessments without officially approved leave will result in no marks and affect your overall course grade.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the academic integrity website for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Course Instructors						
Instructor	Office Location	Phone	Email			
Dr. Foo Yi Shyh Eddy	S1-B1C-89	6790 4519	eddyfoo@ntu.edu.sg			
A/P Josep Pou	S2-B2A-06	6790 4503	j.pou@ntu.edu.sg			

Planned Weekly Schedule

Week	Торіс	Course LO	Readings/ Activities
1	The Wind Energy Resource: Introduction to renewables, wind resource, power in the wind, impact of height	2	2 lectures
2	Wind Turbines: Types of wind turbines, components of wind turbines, efficiency of wind turbines, components of wind turbines	2	2 lectures + 1 tutorial
3	Grid Integration of Wind Turbine Generators: Types of wind turbine generators, doubly-fed induction	2	2 lectures + 1 tutorial

	generators, permanent magnet		
	synchronous generators.		
	The Solar Resource: Solar spectrum,		
4	sun paths, sun path diagrams, solar	2	2 lectures + 1 tutorial + Homework
	insolation		Assignment #1
	Solar Photovoltaic Technology:		
	Photovoltaic semiconductor, solar		
5	cells, modules and arrays, solar PV I-	2	2 loctures + 1 tutorial + Quiz #1
5	•	Z	2 lectures + 1 tutorial + Quiz #1
	V characteristics, effects of insolation		
	and temperature		
	Grid Integration of Solar Photovoltaic		
6	System: Integration techniques and	2	2 lectures + 1 tutorial
	issues, solar PV interaction with loads		
	Background, Distribution of power,		
	Distribution System Planning		
	Load factor, Load shape changes,		
7	Load management, Energy	1	2 lectures + 1 tutorial
	management of electrical equipment		
	Energy losses in power system, losses		
	in transformers, cables and lines		
Recess		Recess Week	
Neccos	Power flow and power factor, Power		
	factor improvement, Most economic		
	power factor, Optimal placement of		
	capacitor, Synchronous condensers		
	Duising of Electricity, Electricity, Toviff		
0	Pricing of Electricity, Electricity Tariff		
8	Structure, Typical electric charges,	1,4	2 lectures + 1 tutorial
	Singapore Electricity Tariff, Rate		
	design for DSM		
	Energy Management, Maximum		
	Demand Management, Duty cycling,		
	Load shedding, Optimal scheduling		
	Introduction of Power Quality,		
	Electromagnetic phenomena, Impact		
	of poor power quality, Tackling		
	power quality problem, Power		
~	quality in Singapore	4.2	
9		1,3	2 lectures + 1 tutorial
	Voltage variations, Causes of voltage		
	variations, Short circuit capacity,		
	Effect of reactive loads, Voltage sags		
	due to motor-starting		
	Fault induced voltage cage Voltage		
	Fault induced voltage sags, Voltage		2 lectures + 1 tutorial + Homowork
10	Fault induced voltage sags, Voltage regulation, Voltage fluctuation / flicker	1,3	2 lectures + 1 tutorial + Homework Assignment #2

	Introduction to harmonics, Characterization of harmonic distortions, Source of harmonics, Typical harmonic characteristics		
11	Symmetrical components & triplens, System response to harmonics Parallel resonance, Series resonance	1,3	2 lectures + 1 tutorial + Quiz #2
12	Harmonic mitigation techniques, Design of harmonic tuned filters	1,3	2 lectures + 1 tutorial
13	Harmonic limits, Summary Review and wrap up of lecture/CA/Assignment materials. Discuss all materials.	1,3	2 lectures + 1 tutorial

Appendix 2: The EAB (Engineering Accreditation Board) Accreditation SLOs (Student Learning Outcomes)

- a) **Engineering knowledge:** Apply the knowledge of mathematics, natural science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems
- b) **Problem Analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c) **Design/development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- d) **Investigation:** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e) **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- f) **The engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- g) **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for the sustainable development.
- h) **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i) Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- j) **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- k) **Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and economic decision-making, and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- I) Life-long Learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.