COURSE OUTLINE

Academic Year	AY2021-22	Semester	2
Course Coordinator	Click here to access EEE C	Course Coordinate	pr's List
Course Code	EE2005 (previously EE301	10)	
Course Title	Electrical Devices and Ma	chines	
Pre-requisites	EE2101/EE2001 Circuit A	nalysis	
No of AUs	3		
Contact Hours	Online Lecture (26 hours) Laboratory (6 hours)); Tutorial (18 hoι	ırs); Face-to-face Briefing (1.5 hours);
Proposal Date	May 2020; latest update	on 17 March 202	2

Course Aims

The objective of the first module is to introduce students to electromagnetic principles and actuators including magnetic circuits and energy conversion devices. The second module focuses on the operating principles of single-phase and three-phase transformers and their applications in power supply systems. The third module furthers the students' knowledge on AC electrical machinery such as induction motors, which are widely used in industry. The final module enables students to understand the basic concepts of DC machines with particular focus on their fundamentals and operating characteristics. Applications of these concepts in solving engineering problems will also be covered.

Intended Learning Outcomes (ILO)

By the end of this course, you should be able to:

- 1. Develop magnetic equivalent circuits to analyse and solve magnetic circuit problems using the basic electromagnetic principles.
- 2. Analyse the performance of electrical transformers and describe their applications in power supply systems.
- 3. Experiment on electrical transformers and analyse their equivalent circuits for parameter determination and performance evaluation.
- 4. Apply the principles of induction motors to electric drive systems.
- 5. Experiment on induction motors to determine the equivalent circuit parameters and analyse the performance characteristics.
- 6. Apply concepts of DC machines to analyse the performance characteristics of DC generators and motors and solve DC machinery problems.

Course Content

Electromagnetic Principles and Actuators. Transformers. AC Machines. DC Machines.

Course Outline

This course is developed as a second-year electrical engineering course and is designed to provide the basic theory along with introduction to most common machines without going into rigorous details of machine theory. The first topic is to introduce students to electromagnetic principles and actuators such as solenoids, relays, and inductors. The second topic enables students to grasp fundamentals and applications of electrical transformers. The third and fourth topics introduce knowledge on AC and DC

Lab D	escription		(6 hours
4	<u>DC Machines</u> Operating principles. Construction and classification. Voltage and torque equations. Operation and characteristics. Losses and efficiency. Speed control.	5	3.0
3	AC Machines Three-phase induction motors. Construction. Operating principles. Equivalent circuits. Performance calculations. Torque-speed characteristics. Losses and efficiency. Determination of equivalent circuit parameters. Speed control. Three-phase induction generators. Synchronous machines, wound rotor, and permanent magnet types.	8	4.5
2	<u>Transformers</u> Ideal transformer. Equivalent circuits. Voltage regulation and efficiency. Determination of parameters. Autotransformers. Three-phase transformers. Instrument transformers. Transformer-rectifier units.	7	6.0
1	<u>Electromagnetic Principles and Actuators</u> Magnetic fields. Magnetic materials and magnetization curves. Magnetic equivalent circuits. Electromagnetic induction. Sinusoidal excitation. Magnetic losses. Electromechanical energy conversion. Solenoids, relays and inductors.	6	4.5
S/N	Торіс	Lecture Hours	Tutorial Hours

Lab Module 1 (L2005A/L3010A): Testing and Operation of a Transformer. A transformer is very common equipment in an electric power system. This experiment deals with two fundamental aspects of a transformer: (i) tests conducted to determine the equivalent circuit parameters of a transformer, and (ii) investigations into performance characteristics of a transformer. The background theory for this experiment is outlined in the lab manual. After completing this experiment, students should be able to determine the equivalent circuit parameters of a transformer.

Lab Module 2 (L2005B/L3010B): Operation and Speed Control of Induction Motors. Three-phase induction motors are very commonly used in industries. The objective of this experiment is to deal with three fundamental aspects of a three-phase induction motor: (i) tests conducted to determine the equivalent circuit parameters of a three-phase induction motor, (ii) investigations into performance characteristics of a three-phase induction motor under load conditions, and (iii) speed control of a three-phase induction motor under load conditions, and (iii) speed control of a three-phase induction motor under no-load condition. The background theory for this experiment is outlined in the lab manual. After completing this experiment, students should be able to determine the equivalent circuit parameters of a three-phase induction motor and calculate the performance of the motor through

the equivalent circuit. The students will also understand the technique of controlling the speed of a threephase induction motor.

Component	Course LO Tested	Progra or Gi	lated amme raduat ributes	e	Weigh	tage	Team /Indi	ı vidual	A	ssessn	nent	Rubrio	CS
1. Final examination	1-6	EAB S	LO a, b), C	60%		Individual						
2. Continuous Assessment 1 (CA1): Quiz 1	1-3	EAB S	LO a, b), C	10%		Individual						
3. Continuous Assessment 2 (CA2): Quiz 2	4-6	EAB S	LO a, b), C	10% Ind		Indiv	vidual					
 Continuous Assessment 3 (CA3): Home Assignment 	1-3	EAB S	EAB SLO a, b, c		109	%	Individual						
5. Continuous Assessment 4 (CA4): Lab Experiment L2005A	3		EAB SLO a, b, d, i, j		5%	,)	Individual						
6. Continuous Assessment 5 (CA5): Lab Experiment L2005B	5	EAB SL	.O a, b i, j	, d,	5%		Individual						
Total					100	%							
Mapping of Course	SLOs to EA	B Grad	uate A	ttrib	utes (ne	w req	Juiremo	ent to	update	e Scho	ol da	tabas	e)
Course Student		EAB's 12 Gradu		radua	te Attri	butes	*						
Learning Outcomes	Cat	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(I)
EE2005 (EE3010) Electrical Devices and Machines	EE2005 - Core; EE3010 - MPE	•	D	•	D		0			0	0		0

1. Develop r	nagnetic equivalent circuits to analyse and solve magnetic circuit	
•	using the basic electromagnetic principles.	EAB SLO* a, b, l
•	ne performance of electrical transformers and describe their ns in power supply systems.	EAB SLO* a, b, l
•	nt on electrical transformers and analyse their equivalent circuits eter determination and performance evaluation.	EAB SLO* a, b, d, i, j
4. Apply the	principles of induction motors to electric drive systems.	EAB SLO* a, b, l
•	nt on induction motors to determine the equivalent circuit rs and analyses the performance characteristics.	EAB SLO* a, b, d, i. j
	cepts of DC machines to analyse the performance characteristics erators and motors and solve DC machinery problems.	EAB SLO* a, b, l
egend: ● ● O Blank	~	ng Outcomes)
ormative fee	dback	
tudents will b	e able to receive the feedback through:	
Quiz scores an	d answers.	
lome assignm	ent scores and answers.	
aboratory ass	essments.	
xamination re	esults; and	
Aarkers' repo	rt on overall examination performance.	
earning and 1	Teaching approach	
Approach	How does this approach support students in achieving the lear	ning outcomes?
Lecture	The video lectures provide important conceptual background for skills that students will develop in Learning Outcomes 1 to comprise explanations of theories and have many worked examplactice.	6. The video lectures
Tutorial	The tutorials provide an opportunity for students to discuss prob on the video lectures that can help them to understand how to and theories learnt to solve engineering problems, thus hel Learning Outcomes 1 to 6.	o apply the knowledge
Laboratory	The laboratories provide a hands-on experience for students to	o conduct experiments

Reading and References

ТЕХТВООК

- 1. Guru Bhag S and Hiziroglu Huseyin R, <u>Electric Machinery and Transformers</u>, 3rd Edition, Oxford University Press, 2001. (TK2000.G981.2001 & e-book avail)
- 2. Chapman Stephen J, <u>Electric machinery fundamentals</u>, 5th Edition, McGraw-Hill, 2012. (TK2000.C466 2012)

REFERENCES

1. Sen Paresh Chandra, <u>Principles of Electric Machines and Power Electronics</u>, 3rd Edition, John Wiley & Sons, 2014. (TK2000.S474p2014)

Course Policies and Student Responsibilities

(1) General

Students are required to complete all assigned pre-class readings and online lectures before coming to the corresponding tutorial sessions, attend all tutorial classes punctually and take all scheduled assignments and tests by due dates. Students are required to take responsibility to follow up with course notes, assignments, and course related announcements throughout the course. Students are required to participate in all tutorial discussions and activities.

(2) Continuous assessments and laboratories

Students are required to attend all continuous assessments and laboratory sessions.

(3) Absenteeism

Continuous assessments and laboratories make up a significant portion of students' course grade. Absence from continuous assessments and laboratories without officially approved leave will result in no marks and affect students' overall course grade.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the <u>academic integrity website</u> for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Course Instructors

Instructor	Office Location	Phone	Email
The contact info will b	e provided to students at the be	ginning of each seme	ster.
	· · · · · · · · · · · · · · · · · · ·		
lanned Weekly Sched			

Week	Торіс	Course LO	Readings/ Activities
1	Magnetic fields. Magnetic materials and magnetization curves. Magnetic equivalent circuits.	1	No tutorial in Week 1. A face-to-face briefing on online lectures, learning outcomes, continuous assessments, laboratory assessments and final examination.
2	Electromagnetic induction. Sinusoidal excitation. Magnetic losses.	1	Lecture summary, face-face discussion and Tutorial 1.
3	Electromechanical energy conversion. Solenoids, relays and inductors.	1	Lecture summary, face-face discussion and Tutorial 2.
4	Ideal transformer. Practical transformer. Equivalent circuits.	2	Lecture summary, face-face discussion and Tutorial 3.
5	Voltage regulation and efficiency. Determination of parameters.	2	Lecture summary, face-face discussion and Tutorial 4.
6	Autotransformers. Three-phase transformers.	2, 3	Lecture summary, face-face discussion and Tutorial 5. Lab Experiment L2005A/L3010A
7	Three-phase transformers/ Introduction to principles of AC Machines	2, 3, 4	Lecture summary, face-face discussion and Tutorial 6. Lab Experiment L2005A/L3010A
8	AC Machines	4	Lecture summary, face-face discussion, and Tutorial 7. Quiz 1
9	AC Machines	4	Lecture summary, face-face discussion and Tutorial 8. Home Assignment
10	AC Machines/ Introduction to principles of DC Machines	4, 6	Lecture summary, face-face discussion, and Tutorial 9.
11	DC Machines	6	Lecture summary, face-face discussion, and Tutorial 10.
12	DC Machines	5, 6	Lecture summary, face-face discussion, and Tutorial 11. Quiz 2 and Lab Experiment L2005B/L3010B
13	DC Machines	5, 6	Lecture summary, face-face discussion and Tutorial 12. Lab Experiment L2005B/L3010B