COURSE CONTENT

Course Coordinator	Yuan Zhaoneng
Course Code	HE3602 / HE3032
Course Title	Game Theory
Pre-requisites	HE2001 Intermediate Microeconomics
No of AUs	3
Contact Hours	39 hours (2 hours lecture and 1 hour tutorial per week)

Course Aims

Game theory is the study of strategic interactive decision-making. It is widely used in political science, psychology and evolutionary biology, and it is the dominant paradigm of modern economic analysis. The first part of this course introduces the central concepts and the tools of game theoretical analysis, and the second part focuses on the use of game theory in economics with applications drawn upon settings such as auctions, oligopoly and price wars, organizational design and labour contracts. The course is aimed at 3rd and 4th year students interested in using mathematical modeling to study economic questions.

Intended Learning Outcomes (ILO)

By the end of this course, you (as a student) would be able to:

- 1. Describe what is a "game" in the language of game theory and define the key ingredients of a game.
- 2. Transform an economic relationship between two or more parties into a "game" and analyze (i.e., make predictions) the relationship from the lens of game theory.
- 3. Explain the differences in the information structure of a game and categorize each game into a game of perfect information, imperfect information, complete information, or incomplete information.
- 4. Apply the appropriate equilibrium concept for games with different information structures.
- 5. Critically evaluate the predictions made by each equilibrium concept and identify its short-comings.

Course Content

- 1. Definition of a "game" and strategies.
- 2. Dominance and Rationalizability
- 3. Static games of complete information: Nash equilibrium (NE).
- 4. Application of NE: Cournot and Bertrand Competition
- 5. Dynamic games of complete information: subgame perfect Nash equilibrium (SPE).
- 6. Application of SPE: Stackelberg Model and Bargaining
- 7. Repeated Games
- 8. Static games of incomplete information: Bayes Nash equilibrium (BNE).
- 9. Application of BNE: auctions.
- 10. Dynamic games of incomplete information: perfect Bayesian Equilibrium (PBE)
- 11. Application of PBE: signaling and cheap talk.

Course Assessment

CA1: Midterm Quiz		25%
CA2: Take-home Assignment	:	15%
CA3: Final Examination	:	50%
CA4: Participation		10%

Total 100%

Reading and References

Gibbons, Robert. A Primer in Game Theory. MIT press, 1992.

Course Instructors

Instructor	Office Location	Email
Yuan Zhaoneng	SHHK 04-52	zhaoneng.yuan@ntu.edu.sg

Planned Weekly Schedule

Week	Торіс	Course LO	Readings/ Activities		
1	Definition of games	1-5	Lecture notes		
2	Dominance and Rationalizability	1-5	Lecture notes and we		
3	Pure and Mixed strategy Nash equilibrium	1-5	Lecture notes and homework exercises		
4	Applications of NE	1-5	Lecture notes and homework exercises		
5	Subgame perfect Nash equilibrium	1-5	Lecture notes and homework exercises		
6	Application of SPE	1-5	Lecture notes and homework exercises		
7	Midterm Quiz	1-5	-		
Recess Week					
8	Repeated Games	1-5	Lecture notes and homework exercises		
9	Bayesian Nash Equilibrium	1-5	Lecture notes and homework exercises		
10	Application of BNE	1-5	Lecture notes and homework exercises		
11	Subgame Perfect Bayesian equilibrium	1-5	Lecture notes and homework exercises		
12	Application of PBE	1-5	Lecture notes and homework exercises		
13	Revision	1-5	Lecture notes and homework exercises		