Nanyang Technological University Division of Physics and Applied Physics

Academic Year	2023/24	Semester	1
Course Coordinator	Assoc. Prof	. Massimo Pic	a Ciamarra
Course Code	PH2103		
Course Title	Thermal Ph	ysics	
Pre-requisites	PH1104 and MH1803 ar CY1308 and MH1101 ar	d MH2800 OR Id PH1104 OR I CY1601 and Id MH1200	CY1602 OR
No of AUs	4 AU		
Contact Hours	Lecture: 39	hours (3 hou	rs per week); Tutorial: 12 hours (1 hour per week)
Proposal Date	21 July 202	3	

Course Aims

The course aims to equip you with the basic concepts in Thermal Physics. You will develop physical intuition and analytical skills which are important for studying physical systems and solve problems involving temperature, heat and energy. These knowledge and skills are at the basis of subsequent higher-level courses and are critical in the engineering profession.

Intended Learning Outcomes (ILO)

Upon the successful completion of this course, you (as a student) would be able to:

- 1. perform units conversion, dimensional analysis of formulas and make simple estimates of physical quantities related to thermal physics in daily life;
- 2. solve problems and explain daily phenomena involving change in temperature, energy, solid/liquid/gas transformations, heat flow.
- **3.** explain the working principles of thermometers (such as liquid in gas, constant volume thermometer) and how thermometric properties and fixed points are used in the calibration of the various temperature scales (including Celsius and Kelvin scale).
- **4.** use definition of thermal equilibrium to solve problems involving heat exchanges between two or more bodies and changing of phase.
- 5. solve problems involving the change of phase of a substance, heat exchange, and latent heat.
- 6. identify the different heat transfer mechanisms at work in different daily context.
- 7. apply the ideal gas law and the kinetic theory of gases to analyze a given system of gas.
- **8.** apply the van der Waals equation to analyze the behavior or real gases.
- 9. use PV diagrams to describe thermodynamic transformations.
- **10.** apply the first law of thermodynamics to analyze the heat exchange, change in internal energy, work done and thermal efficiency of a given heat engine.
- **11.** solve problems involving the heating and cooling of gases, distinguishing the constant volume and the constant pressure behavior.
- **12.** use the second law of thermodynamics to explain why some processes occur spontaneously, while others do not; and its implications on the maximum efficiency of thermal cycles.
- **13.** evaluate the entropy change associated to a thermodynamic transformation.
- **14.** estimate the entropy starting from the concept of microstates and of macrostates, for simple model systems.
- **15.** evaluate the entropy dependence on the volume and on the energy of a system.
- **16.** use the second law of thermodynamic, and the concept of entropy, to define temperature, pressure and chemical potential.

17. solve thermodynamic problems of systems interacting with reservoir.

- **18.** approximate large numbers of microstates in Boltzmann's entropy formula using Stirling's approximation.
- **19.** calculate the entropy of an ideal gas using microstates, and use it to derive the ideal gas law.
- **20.** correctly apply different types of free energy (e.g., Helmholtz, enthalpy) to systems with different types of mechanical constraints
- **21.** use the concept of Boltzmann factor and partition function to calculate the distribution of speeds of gas particles.
- **22.** derive the Stefan-Boltzmann law using microstates of radiation and use it to estimate the temperature of black bodies.

Course Content

Basic Principles

Units Mass, Weight and Density Atoms, microscopic structures and states of matter Pressure, Temperature, Energy Entropy

Thermal Physics

Temperature and Thermometer Thermodynamic equilibrium Heat transport: conduction, radiation, and convection Thermal Expansion Equation of state Perfect gases and absolute zero Ideal Gases Kinetic Theory of Gases Real Gases

Thermodynamics

First Law of Thermodynamics Heat capacities Phase changes and latent heat Zeroth Law of Thermodynamics Work, heat and internal energy Adiabatic, reversible and irreversible changes Second law of Thermodynamics Macrostate and microstates Entropy Heat engines, efficiency, and Carnot cycles. The third law of thermodynamics

Statistical Mechanics

Probability and multiplicity; large numbers and central limit theorem Boltzmann's microscopic definition of Entropy Microscopic definition of temperature Paramagnetism Einstein solid Entropy of an ideal gas Nanyang Technological University Division of Physics and Applied Physics

Mechanical equilibrium and pressure Diffusive equilibrium and chemical potential Concept of free energies (Helmholtz, enthalpy, etc) Thermodynamic identities Boltzmann distribution Partition function Maxwell distribution of velocities Blackbody radiation Stefan-Boltzmann law

Assessment (includes both continuous and summative assessment)

Component	Course ILO Tested	Weighting	Team / Individual	Assessment Rubrics
1. Final Examination	All	50%	Individual	Point-based marking (not rubric-based)
2. CA1: Assignments (every two weeks)	All	15%	Individual	Point-based marking (not rubric-based)
3. CA2: Mid-term Test	1-13	30%	Individual	Point-based marking (not rubric-based)
4. CA3: Quiz	All	5%	Individual	Learning Catalytics
Total		100%		

Formative feedback

Formative feedback is given through discussion within tutorial lessons as well as interactive computer-based hints.

Formative feedback is given through the in-class discussion of the assignments. Feedback is always provided for student's response to each question.

Feedback is also given after the midterm on the common mistakes and level of difficulty of the problems. Past exam questions and examiner's report are made available for students.

Learning and Teaching approach			
Approach	How does this approach support students in achieving the learning outcomes?		
Problem solving (tutorial and lecture)	Develop competence and perseverance in solving physics problems		
Hands-on group activities (during	Develop physical intuition and competence in solving real-life problems. Relate everyday phenomena to physics.		

tutorial)					
Peer Instruction (during lecture)	Develop communication You are encouraged to c learn from one another.	skills and competent liscuss about your an	ce in physics. swers so that they can		
Reading and Referen	Ces				
1. H. D. Young ar	nd R. A. Freedman, Sears an	d Zemansky's Univer	sity Physics with Modern		
Physics, 14 th E	dition (Pearson, 2016), ISBI nd K. M. Blundell, Concepts	N 978-1292100319 s in Thermal Physics.	2 nd Edition (Oxford, 2010), ISBN		
978-01995622	107				
3. D. V. Schroede 978-02013802	r, An Introduction to Thern? ?79	nal Physics (Addison)	Wesley Longman, 2000), ISBN		
Course Policies and S	tudent Responsibilities				
Absence Due to Medi	cal or Other Reasons				
If you are sick and un	able to attend your mid-ter	m, you have to:			
1. Send an email	to the instructor regarding	the absence.			
2. Submit the Me	dical Certificate* or official	letter of excuse to ac	dministrator.		
A student who is absent from mid-term test without valid Leave of Absence will be given zero mark. There will be no make-up test. In case of valid reason for absence, the total course marks would subsequently be rescaled to a base of 100%.					
* The medical certific	* The medical certificate mentioned above should be issued in Singapore by a medical practitioner				
registered with the Si	registered with the Singapore Medical Association.				
Academic Integrity					
Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.					
As a student, it is imp principles of academ maintaining academi yourself with strategie collusion and cheatin the academic integri	ortant that you recognize yo ic integrity in all the work c integrity does not excuse es to avoid all forms of acade g. If you are uncertain of the ty website for more inform	our responsibilities in you do at NTU. N academic dishones emic dishonesty, inclu ne definitions of any mation. Consult you	understanding and applying the ot knowing what is involved in ty. You need to actively equip iding plagiarism, academic fraud, of these terms, you should go to ar instructor(s) if you need any		
clarification about the requirements of academic integrity in the course.					
Course Instructors					
Instructor	Office Location	Phone	Email		
Massimo Pica Ciama	rra SPMS PAP 03-14	65922542	massimo@ntu.edu.sg		

Planned Weekly Schedule

Week	Торіс	Course ILO	Readings/Activities	
1	Thermodynamic equilibrium; thermal expansion; thermometers; temperature scales; perfect gases and absolute zero;	1-4, 9, 10	In-class Learning Catalytics; experiment: temperature of melting ice; YF 17	
2	Mechanical equivalent of heat; heat capacities, specific heat capacity, molar heat capacity. Latent heat; Heat transport – conduction, radiation, and convection as transport mechanisms;	5-7	In-class Learning Catalytics; experiment: Newton's law of cooling; YF 17	
3	Equation of state; ideal gas; kinetic theory; pressure; mean free path;	8	In-class Learning Catalytics; YF 18	
4	Heat capacities and equipartition principle; heat flux and heat diffusion equation; thermal conductivity of the ideal gas	11	In-class Learning Catalytics; YF 17, YF 18, Schroeder 1.7	
5	Equations of state; phase diagrams; PV diagrams	11-13	Mid-term Test; YF 18	
6	The first law of thermodynamics – work, heat, and internal energy; adiabatic, reversible and irreversible changes;	14	In-class Learning Catalytics; YF 19	
7	Heat capacities of an ideal gas; Adiabatic proceses	15	In-class Learning Catalytics; YF 19	
8	Heat engines and Carnot cycle, refrigerators, efficiency, Clausius' theorem and second law of thermodynamics	10, 16, 17	YF 20 In-class Learning Catalytics; Schroeder	
9	Multiplicity; large numbers and central limit theorem; Stirling's approximation; Boltzmann's Entropy Formula; Microscopic definition of temperature	16, 18	2.4, 2.5, 2.6, 3.1	
10	Paramagnetism; Einstein solid; Entropy of an ideal gas	19	In-class Learning Catalytics; Schroeder 2.1, 2.2, 2.6, 3.3	
11	Thermodynamic potentials and Maxwell relations; Boltzmann factor and partition function	20	In-class Learning Catalytics; Schroeder 5.1, 5.2, 6.1-6.3	
12	Maxwell distribution of velocities; Statistical mechanics of a diatomic gas	21	In-class Learning Catalytics; Schroeder 6.2, 6.4	
13	Statistical mechanics of photons and phonons; revision lecture	22	In-class Learning Catalytics; Schroeder 7.4, 7.5	