COURSE CONTENT FOR PH7021 for Undergraduates

Academic Year	2022/2023 Semester 2				
Course Coordinator	Asst. Prof. Nelly Ng				
Course Code	PH7021 (previously listed as PAP750)				
Course Title	Quantum Information				
Pre-requisites	(PH3404 Physics of Classical & Quantum Information or MH2500 Probability & Introduction to Statistics), and PHY (PPHY) or PHY (APHY) programme and CGPA 4.0 or higher				
No of AUs	4 AU				
Contact Hours	Face-to-face, physical classes Lecture: 39, Tutorial: 12 (3 hrs lecture each week; 1 hr tutorial each week)				
Proposal Date	13 October 2022				

Course Aims

This course aims to equip you with the central theoretical framework and tools which are paramount to understanding the advantage brought by quantum information processing and some experimental basics of realizing these technologies. You will learn a comprehensive overview of central topics of interest in active research areas.

These skills are critical for you who are aiming at a career in quantum information technologies.

Intended Learning Outcomes (ILO)

By the end of this course, you should be able to:

- 1. Demonstrate an understanding of the structure and properties of objects in quantum information (classical random variables and channels, density matrices, quantum processes) and interpret the physical meaning behind these objects.
- 2. Translate a preparation procedure into typical multipartite density matrices such as classicalquantum states.
- 3. Compute probabilities corresponding to the output of a quantum measurement after a series of entangling quantum gates.
- 4. Identify the techniques that allow for a proof of quantum advantage in quantum cryptography
- 5. Distinguish between problems in different computational complexity classes
- 6. Derive the speedup in basic quantum algorithms

Course Content

Syllabus:

1) Theory

- a) Classical random variables, entropic quantities, and properties, basic overview of channel coding theorems
- b) Quantum information formalism: states, unitaries and quantum circuit model
- c) Entropic measures and uncertainty relations, no-go theorem
- d) Computational and query complexity classes in quantum computing
- e) Quantum cryptography: QKD
- f) Unit quantum protocols: superdense coding & teleportation
- g) Quantum states (density matrices) and channels (CPTPMs, CJ isomorphism, Kraus theorem, main studied examples)

Nanyang Technological University

Division of Physics and Applied Physics

- h) Distance measures (distance norms, fidelity variants)
- i) elementary quantum algorithms: Quantum Fourier Transform, Grover's algorithm, phase estimation, overview of modern algorithms
- j) Classical and quantum typicality, quantum versions of coding theorems
- 2) Experiment
 - a) Ultracold atoms: Atomic Qubits / Qubit realization / Rydberg Interaction / Optical lattices / Atom arrays / Ion Traps / trapping
 - b) Superconducting Quantum Electronics:
 - a. Circuit realization of qubits (various flavours)
 - b. Characterization (T1 / T2)
 - c. Various physical realization single and two qubit gates / benchmarking
 - d. Readout strategies / State Tomography
 - e. Implementation of algorithms
 - c) Noise and other challenges
- 3) Research seminars
 - a) Quantum linear optics / continuous variable quantum information
 - b) Quantum metrology and sensing
 - c) Quantum simulators
 - d) Quantum resource theories

Assessment (includes both continuous and summative assessment)

Component	ILO Tested	Related Programme LO or Graduate Attributes	Weighting	Team/Individual	Assessment Rubrics
1. Continuous Assessment: Test 1	All	Competency 1,2,4,5,6	20%	Individual	Point-based marking
2. Continuous Assessment: Test 2	All	Competency 1,2,4,5,6	20%	Individual	Point-based marking
3. Continuous Assessment: Homework	All	Competency 1,2,4,5,6	25%	Individual	Point-based marking
4. Project presentation	All	Competency 1,2,4,5,6, Communication 1,2 Character 1,2	35%	Individual	See Appendix
Total	•		100%		

Formative feedback

Formative feedback is given weekly through assignments marking and tutorial classes. During the tutorial hours, the instructor discusses the progress, pace, and difficulty level of lectures.

 Learning and Teaching approach					
Approach	How does this approach support you in achieving the learning outcomes?				

Lectures	Lectures provide the necessary content and practice of problem solving and discussion of conceptual understanding.		
Tutorial	The students review and discuss main concepts learned in lectures by working through problems.		
Homework	The homework comprises practice questions that are covered during tutorials, allowing for formative assessment and feedback.		
Project	Students read a milestone paper in the field of quantum information and present it to their peers.		
Deeding and De			
Reading and Ref	rerences		
	putation and quantum information, M. Nielsen and I. Chuang, Cambridge 2010). ISBN: 978-1107002173		
2. Quantum Inforr 1107176164	nation Theory, Mark Wilde, Cambridge University Press (2017) ISBN: 978-		
3. Learning quant resource)	um computation using Qiskit, online textbook, Qiskit (No ISBN Number, online		
Course Policies	and Student Responsibilities		
	Medical or Other Reasons		
If you are sick and	d unable to attend your class, you have to:		
1. Send an er	nail to the instructor regarding the absence,		
2. Submit the	original Medical Certificate* or official letter of excuse to administrator, assigned replacement class (<i>subject to availability</i>).		
	tificate mentioned above should be issued in Singapore by a medical practitioner e Singapore Medical Association.		
Academic Integr	ity		
student relies on a	work depends on honesty and ethical behaviour. The quality of your work as a adhering to the principles of academic integrity and to the NTU Honour Code, a se by the whole university community. Truth, Trust and Justice are at the core o ues.		
the principles of a maintaining acade yourself with stra fraud, collusion ar go to the <u>academ</u>	important that you recognize your responsibilities in understanding and applying academic integrity in all the work you do at NTU. Not knowing what is involved in emic integrity does not excuse academic dishonesty. You need to actively equip tegies to avoid all forms of academic dishonesty, including plagiarism, academic ad cheating. If you are uncertain of the definitions of any of these terms, you should ic integrity website for more information. Consult your instructor(s) if you need any the requirements of academic integrity in the course.		

Nanyang Technological University Division of Physics and Applied Physics

Course Instructors

Instructor	Office Location	Phone	Email
Asst. Prof. Nelly Ng	SPMS PAP-03-05	89095913	nelly.ng@ntu.edu.sg

Planned Weekly Schedule

Week	Торіс	ILO	Readings/ Activities		
Week 1	Classical information theory	1a	Textbook, lecture		
Week 2	Pure quantum states and properties	1b	notes, videos		
Week 3	Limits of quantum information	1c,1d,1e			
Week 4	Density matrices and quantum channels	1g			
Week 5	Quantum communication protocols, more on quantum channels Quiz 1 Experimental quantum information: cold atoms	2a,2c,1f			
Week 6	Quantum Fourier Transform Experimental quantum information: superconducting qubits	2b,2c	Guest lecture, textbook, lecture notes		
Week 7	Phase estimation, application in Shor's algorithm	1i	Textbook, lecture notes, videos		
Week 8	Grover's algorithm, closeness measures	1i, 1h			
Week 9	Classical and quantum typicality, quantum versions of data compression and channel capacity theorems	1j			
Week 10	Continuous variable quantum information, quantum metrology and sensing	3a, 3b	Guest lecture/ research seminar given by instructor		
Week 11	Quantum simulation, resource theories	3c, 3d			
Week 12	Student presentations Quiz 2	Student presentations, lecture			
Week 13	Student presentations, concluding remarks	N/A	notes		

Nanyang Technological University Division of Physics and Applied Physics

Criteria	Exceeds Standard	Meets Standard	Almost Meets Standard	Does not meet standard
	(10 – 9)	(8.5 – 6)	(5.5 – 3.5)	(3 – 0)
Use of pace, tone and style 5%	Effective and creative use of pace, tone and style to emphasize key points and engage audience.	Effective use of pace, tone and style.	Somewhat effective use of pace, tone and style.	Ineffective use of pace, tone and style.
Report Structure & Organization 10%	Provides a complete and thorough presentation of the appropriate concepts, theories and principles of the subject.	Provides a good presentation of the appropriate concepts, theories and principles of the subject.	Provides an acceptable presentation of the appropriate concepts, theories and principles of the subject.	Provides an unsatisfactory presentation of the appropriate concepts, theories and principles of the subject.
Scientific communication 15%	Communicates difficult or complex ideas in an effective and understandable manner	Communicates ideas in an effective and understandable manner	Communicates ideas somewhat effectively, which are mostly understandable.	Does not communicate ideas effectively.
Q&A 5%	Addresses all questions posed clearly, showing in- depth understanding	Addresses most questions posed clearly, showing satisfactory understanding	Addresses some questions posed, demonstrates partial understanding	Not able to address the posed questions clearly, showing lack of understanding

Appendix 1: Assessment Criteria for Project Presentation

Instructions for report Structure & Organization:

• a presentation of the appropriate concepts, theories and principles of the problem

• an explanation of the observed phenomena

• an application of appropriate mathematics

• reasonable experimental technique to gather and record data (or demonstrate the phenomena if appropriate)

• linking of *theoretical* and *experimental findings* to draw *suitable conclusions*

• an attempt to communicate difficult or complex ideas in an effective and understandable manner

Duration: Presentation (20 min) + Q&A (5 min) = Total of 25 min.

Graduate Attributes

What we want our graduates from Physics and Applied Physics to be able to do:

Upon the successful completion of the PHY, APHY, PHME and PHMS programs, graduates should be able to:

	1	demonstrate a rigorous understanding of the core theories and principles of physics involving (but not limited to) areas such as classical mechanics, electromagnetism, thermal physics and quantum mechanics [PHMS only] demonstrate a rigorous understanding of the core theories and principles of mathematical sciences involving (but not limited to) areas such as analysis, algebra and statistical analysis
	2	read and understand undergraduate level physics content independently;
Competency	3	make educated guesses / estimations of physical quantities in general;
	4	apply fundamental physics knowledge, logical reasoning, mathematical and computational skills to analyse, model and solve problems;
	5	develop theoretical descriptions of physical phenomena with an understanding of the underlying assumptions and limitations;
	6	critically evaluate and distinguish sources of scientific/non- scientific information and to recommend appropriate decisions and choices when needed;
	7	demonstrate the ability to design and conduct experiments in a Physics laboratory, to make measurements, analyse and interpret data to draw valid conclusions.

Creativity	1	propose valid approaches to tackle open-ended problems in unexplored domains;
Creativity	2	offer valid alternative perspectives/approaches to a given situation or problem.

Nanyang Technological University Division of Physics and Applied Physics

	1	describe physical phenomena with scientifically sound principles;
Communication	2	communicate (in writing and speaking) scientific and non- scientific ideas effectively to professional scientists and to the general public;
	3	communicate effectively with team members when working in a group.

	1	uphold absolute integrity when conducting scientific experiments, reporting and using the scientific results;
Character	2	readily pick up new skills, particularly technology related ones, to tackle new problems;
3 contribute as a group.		contribute as a valued team member when working in a group.

<i>Civic Mindedness</i> put together the skills and knowledge into their work i effective, responsible and ethical manner for the bene society.
