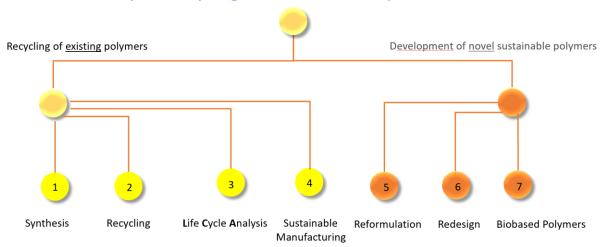
MS7460 Polymer Recycling and Sustainable Polymeric Materials

Rationale

The topic of polymer recycling and sustainable materials has rapidly evolved and has become extremely relevant for (PhD and Meng) students of the School of Materials Science and Engineering. In the first halve of the course we will look at existing materials and how to recycle them. After a recapitulation of the synthesis and composition of some of the main materials, we will cover primary recycling (within the materials manufacturing site), secondary recycling/mechanical recycling, tertiary/chemical recycling to polymer building blocks or other valuable materials. Also quaternary recycling (energy recovery or compostable materials) will be covered. Central at polymer recycling stands collecting and sorting. We will briefly touch upon issues with materials winding up in the environment.


In the second halve we will cover in detail the scientific field of materials science and the methods required for the development of novel sustainable materials. Some aspects of sustainable manufacturing of materials will be shown (eq emulsion polymerization). An introduction to life cycle analysis (LCA) of materials will be given. Then we cover reformulation of materials; for example towards mono-materials and reduction of certain additives (for example colorants). Redesigning polymer materials on a molecular level to make them more easily recyclable through for example the thermoplastic elastomer approach or by introducing dynamic crosslinks (vitrimers) will be extensively covered. Introduction of weak bonds to be able to break down high molecular weight polymers into reactive oligomers is a new and exciting area which will also be covered. Briefly we will touch upon alternative (biobased) building blocks for materials as well as biobased materials replacement. We will review relevant scientific literature on the subject related to several crucial scientific fields and the individual fields of interest of the students with practical cases and lively discussions. The students will write an essay where the main elements of the course will be applied to a topic of their individual choice in the area of sustainable materials.

(A) Course "Polymer Recycling and Sustainable Polymeric Materials"

То	Total No. of Hours										
Lecture	Tutorial	Lab	Total								
17	9	-	26	2							

Further details on course (e.g. course aims, intended learning outcomes, course content, assessment, etc) are provided in **Annex A**.

Polymer Recycling and Sustainable Polymeric Materials

Annex A

1. COURSE CONTENT

Course Coordinator	Professor Alex van Herk
Course Code	MS7460
Course Title	Polymer Recycling and Sustainable Polymeric Materials
Pre-requisites	NA
No of AUs	2
Contact Hours	26 (17 lecture hours and 9 tutorial hours)
Suggested Class Size	30

Course Aims

- 1 This course is trying to achieve full awareness of the sustainability aspects of materials. This includes looking at existing materials and their ways of recycling as well as redesigning materials on formulation and molecular level.
- 2 The course should be taken by PhD and MEng in Materials Science and Engineering and MSc in Materials Science and Engineering that have a vested interest in sustainability of polymer materials.
- 3 Any professional in materials will be looking at sustainability aspects of materials, being it facilitating recycling or replacement by more sustainable alternatives. So for a future career in materials (being it in research or industry) this course is very useful.

Intended Learning Outcomes (ILO)

By the end of this course, you should be able to:

- 1 explain the important aspects of the polymerization mechanisms of materials
- 2 classify the main materials according to key materials properties and polymerization mechanism of formation
- 3 identify the main environmental issues with polymer waste
- 4 identify the most important aspects of polymer waste collection and sorting
- 5 explain the main aspects and current industrial applications of the four polymer recycling routes
- 6 explain the main aspects of life cycle analysis
- 7 give examples of aspects of sustainable manufacturing of materials
- 8 to apply aspects of reformulation of materials to make then more sustainable
- 9 to apply aspects of redesigning materials on a molecular level to make them more sustainable
- 10 to explain the main biobased building blocks and biobased replacements of materials
- 11 critically read and interpret scientific literature in the area of sustainable polymeric materials
- 12 write an essay in your specific area of interest with respect to sustainable polymeric materials

Course Content

Materials classification

Key materials properties

Step-growth polymerization

Chain-growth polymerization

Polymerization techniques

Environmental issues

Collecting and sorting of materials

Primary recycling

Secondary/mechanical recycling with deterioration of properties and remedies

Tertiary/chemical recycling

Quaternary recycling (energy recovery and/or compostable materials)

Life Cycle Analysis

Aspects of sustainable manufacturing of materials (eg emulsion polymerization)

Reformulation of materials for increased sustainability

- -Monomaterials
- -Additives

Redesign of materials on molecular level

- -Thermoplastic vs thermoharders; physical crosslinks (thermoplastic elastomers), reversible crosslinks (vitrimers)
- -Insertion of weak bonds

Biobased building blocks

Biobased materials replacements

Discussion of scientific literature on sustainable materials

Essay writing on sustainable materials

Assessment (includes both continuous and summative assessment)

Component	ILO Tested	Weighting	Team/Individual	Assessment Rubrics
1. Quizzes (6)	1-10	60%	Individual	Appendix 1
2. Continuous Assessment and class participation during live sessions (6)	1-11	20%	Individual	Appendix 2
3.Essay	12	20%	Individual	Appendix 3
Total		100%		

Formative feedback

Every session we will discuss the answers of the previous quiz. Your final essay will be graded and comments from me and your peers will be given.

Learning and Teaching Approach

Approach	How does this approach support you in achieving the learning outcomes?
Lecture (prerecorded)	The lecture materials are accompanied by self-practice questions, not only help to build the fundamental technical knowledge required for this course, but also help to develop your individual learning abilities and attitudes toward active learning. You may attempt the self-practice questions anytime, anywhere, and you can revisit the self-practice questions as many times as you want.
Live (on-line sessions)	These sessions will allow you to ask specific questions and for the teacher to assess you understanding of the course materials. We will discuss scientific literature in the area of sustainable materials.
Essay writing	This will allow the technical knowledge acquired in this course to be applied to a topic of specific interest to the student and apply design principles from the course. Some specific questions about your essay will be asked after submission. These questions serve to establish to what extend you are "owning" the essay.

Reading and References

Introductory reading:

For basics in polymer chemistry (ILO 1,2): for example Introduction to Polymers

By Robert J. Young, Peter A. Lovell, chapters 1-4 or M. P. Stevens, *Polymer Chemistry, An Introduction*, chapters 1-4.

- O Straights Times Nov 2, 2019 Biodegradable disposables can harm environment too
- 1 Nature 2021 Vol 590, p423, Closed-loop recycling of polyethylene-like materials, S. Mecking et al.
- 2 Nature Reviews 2022 2:46, Sustainable Polymers, Amar K. Mohanty et al.

Further reading and some of the papers to be discussed in the live sessions (number in bold):

- 3 Science 2021, Vol. 373, No. 6550 Plastics In The Earth System., A. Stubbings Et Al.
- **4** Macromol. Rapid Commun. 2021, 42, 2000415, *Mechanical Recycling of Packaging Plastics, A Review*, Z.O.G. Schijns, M.P. Shaver
- **5** Nature Reviews, Materials https://doi.org/10.1038/s41578-020-0190-4, Chemical Recycling to monomer for an ideal, circular polymer economy, G.W. Coates and Y.D.Y.L. Getzler.
- 6 Waste Management 104 (2020) 148–182 Challenges and opportunities of solvent-based additive extraction methods for plastic recycling, Sibel Ügdüler et al.
- **7** Recycling 2022, 7, 11, Assessment of performance and challenges in use of commercial automated sorting technology for plastic waste., C. Lubongo and P. Alexandridis
- 8 <u>www.Intechopen.com</u> 2012 *Recent Advances in the Chemical Recycling of Polymers*, D.S. Achilias et al.
- 9 Sci. Adv. 2020; 6: eaba7599, Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation, Walker et al.,
- 10 Grün Book CLOSING THE WASTE LOOP THROUGH INNOVATIVE PLASTIC RECYCLING 2020
- 11 Environ. Sci. Technol. 2010, 44, 8264-8269. *Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers*, M.D. Tabone et al.
- 12 J. of Industrial Ecology 2021, 25, 1318-1337 *Techno-economic assessment and comparison of different plastic recycling pathways*, R. Volk et al.
- 13 Waste Management 105 (2020) 128-138 *Technologies for chemical recycling of household plastics-A technical review and TRL assessment*, M. Solis, S. Silveria
- **14** Resources, Conservation and Recycling Vol 145, 2019, p 67-77, *LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore*, Hsien H. Khoo
- 15 Macromol. Chem. Phys. 2022, 223, 2100488 The Frontier of Plastics Recycling: Rethinking Waste as a Resource for High-Value Applications Hannah Mangold et al.
- 16 Macromol. Chem. Phys. 2022, 223, 2200111 Getting the Terms Right: Green, Sustainable, or Circular Chemistry?, Hatice Mutlu and Leonie Barner

- **17** Canadian Journal of Chemical Engineering, 2021, vol 99, p 31–60. Sustainable polymer reaction engineering: Are we there yet?, M. Dube et al.
- 18 Resources, Conservation & Recycling 179 (2022) 106126 Recyclable-by-design mono-material flexible packaging with high barrier properties realized through graphene hybrid coatings Marco Guerritore et al.
- **19** Angew. Chem. 2024, 136, e202402436 Photocatalytic Upcycling and Depolymerization of Vinyl Polymers Kostas Parkatzidis, Hyun Suk Wang, and Athina Anastasaki
- **20** Macromolecules **53**, 3994-4011 (2020). *Degradable Poly(alkyl acrylates) with Uniform Insertion of Ester Bonds, Comparing Batch and Semibatch Copolymerizations*, Lena et al.
- 21 J. Am. Chem. Soc. 2020, 142, 2100–2104 A Polymer with "Locked" Degradability: Superior Backbone Stability and Accessible Degradability Enabled by Mechanophore Installation, Hsu et al. 22 Science 334, 965 (2011, Silica-like malleable materials from permanent organic networks. L. Leibler et al.
- 23 <u>www.bio-based.eu/markets</u> *Bio-based Building Blocks and Polymers in the World*, Pia Skoczinski, et al. Edition 2020
- **24** Procedia CIRP 116 (2023) 522–527 *Life Cycle Assessment of Plastic Waste End-of-life Treatments in Singapore* . Jonathan Low et al

Course Policies and Student Responsibilities

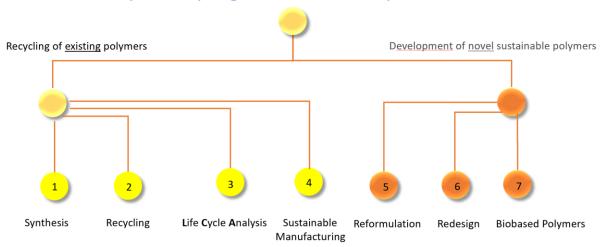
(1) General

You are expected to complete all assigned pre-class (live sessions) readings and activities, attend all live sessions punctually and take all scheduled assignments and quizes by due dates. You are

expected to take responsibility to follow up with course notes, assignments and course related announcements for seminar sessions they have missed. You are expected to view all pre-recorded lectures before the respective live sessions.

(2) Absenteeism

Absence from a live session without a valid reason will affect your overall course grade. Valid reasons include falling sick supported by a medical certificate and participation in NTU's approved activities supported by an excuse letter from the relevant bodies.


If you miss a live session, you must inform the course instructor via email prior to the start of the class.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the <u>academic integrity website</u> for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Polymer Recycling and Sustainable Polymeric Materials

Course Instructor MS7460

In	structor	Office Location	Phone	Email		
Α.	.M. van Herk	NA	+31-643164333	a.m.v.herk@tue.nl		

Planned Weekly Schedule (appr. 2 hours per week)

CA / videos	Topic	ILO	Readings/ Activities before respective session
Week 2 M1L1	Introductory meeting	1, 2	Refresh knowledge
	Materials classification		on step-growth
M1L2	Key materials properties		polymerization.
	Step-growth		
	polymerization		- 6
Week 3 M1L3 Modul 1	Chain-growth polym.	1, 2	Refresh knowledge
Modul 1	(radical polymerization)		on chain-growth
	Live session 1 (ILO 1,2)		polymerization.
	Quiz 1 (ILO 1, part of 2)		
Week 4 M1L3	Chain-growth polym.	2, 3, 4, 5	Read ref 7
	(Ionic, Coord.)		
M2L1	Environmental issues		
	Collecting and sorting of		
	materials.		
M2L2	Primary recycling		
Week 5 M2L3	Secondary/mechanical	3, 4, 5	Read ref 4
	recycling with		
	deterioration of		
Modul 2	properties and remedies		
1110441 23	Live session 2 (ILO 11)		
	Quiz 2 (ILO 3,4,5,Pri, Sec)		
Week 6 M2L4	Tertiary/chemical	5	Read ref 5
	recycling		

Week 7 M2L5	Quaternary recycling (energy recovery and/or compostable materials) Live session 3 (ILO 11) Quiz 3 (ILO 5)	5, 11	Read ref 24
Week 8 M3L1-L2-L3	Life Cycle Analysis	6	Read ref 14
Recess Modul 3			
Week 9 M4L1-L2-L3 Modul 4	Aspects of sustainable manufacturing of materials, polymerization techniques.	7, 11	Read ref 17 and do a literature search on topic to be decided.
Wiodul 4	Live session 4 (ILO 11)		
14/2 - 1/2 10	Quiz 4 (ILO 6, 7)	0	Dand salastad salas
Week 10 Modul 5	Reformulation of materials for increased sustainability -Monomaterials -Additives	8	Read selected paper from previous session (week 8)
M5L1-L2-L3	-Additives		
Week 11 M6L1-L2 Modul 6	Redesign of materials on molecular level;	9, 11	Select you essay topic Read ref 19 and 20
Modul o	Live session 5 (ILO 11) Quiz 5 (ILO 8, 9 L1 L2)		
Week 12 M6L3	Essay writing	9, 11, 12	Write essay before deadline.
Week 13 M7L1-L2-L3 Modul 7	Biobased building blocks Biobased materials replacements Live session 6 (ILO 11) Quiz 6 (ILO 9 L3, 10)	10	Read ref 23

Appendix 1

Quizzes

Criteria	Unsatisfactory: <40%	Borderline: 40% to 49%	Satisfactory: 50% to 69%	Very good: 70% to 89%	Exemplary: >90%
1 explain the	Lacks understanding of	Some understanding of	Can classify the two main	Can classify the two main	Can classify the two main
important aspects of	what a polymerization	what a polymerization	polymerization	polymerization	polymerization
the polymerization	mechanism is. Cannot	mechanism is but cannot	mechanisms but cannot	mechanisms and can name	mechanisms and can name
mechanisms of	explain important	name them and only	name important aspects	important aspects but	all important aspects.
materials	aspects of	partially can mention	or only one.	misses out on one or two.	
	polymerization	important aspects.			
	mechanisms				
2 classify the main	Cannot mention any	Can mention 3-4	Can mention 3-4 different	Can mention 4 different	Can mention 4 different
materials according	materials nor associate	different polymeric	polymeric materials and	polymeric materials and	polymeric materials and
to key materials	them with key	materials but cannot	can at least for one	can associate the materials	can associate with their key
properties and	materials properties. Is	associate them with	material associate with	with most of their key	materials properties.
polymerization	not able to match the	their key materials	their key materials	materials properties.	Is able to match all the
mechanism of	materials with the	properties. Is only able	properties.	Is able to match most of	materials with the
formation.	polymerization	to match one or two of	Is able to match most of	the materials with the	polymerization mechanism
	mechanism of	the materials with the	the materials with the	polymerization mechanism	of formation.
	formation.	polymerization	polymerization	of formation.	
		mechanism of	mechanism of formation.		
		formation.			
3 identify the main	Does not recall any	Can mention one or two	Can mention most	Can mention most	Can mention all
environmental issues	negative aspects of	environmental issues	environmental issues but	environmental issues and	environmental issues and
with polymer waste.	plastics in the	but cannot give any	cannot give any further	can give further details on	can give detailed
	environment.	further details.	details.	one or two of them.	information about all of
					them.

4 identify the most important aspects polymer waste collection and sorting.	· · · ·	Can identify some aspects of either polymer waste collection or sorting.	Can identify some aspects of polymer waste collection and sorting.	Can identify most aspects of polymer waste collection and sorting.	Can identify all aspects of polymer waste collection and sorting.	
5 explain the mair aspects and curre industrial applications of the four polymer recycling routes	nt polymer recycling routes and cannot give any examples of industrial applications of polymer recycling routes.	polymer recycling routes but not in any detail and cannot give any examples of industrial applications of polymer recycling routes.	Is aware of the four polymer recycling routes and can give most aspects of those routes and can give one or two examples of industrial applications of polymer recycling routes.	Is aware of the four polymer recycling routes and can give most aspects of those routes and can give examples of industrial applications of most of the four polymer recycling routes.	Is aware of the four polymer recycling routes and can give all aspects of those routes and can give examples of industrial applications of each of the four polymer recycling routes.	
Criteria	Unsatisfactory: <40%	Borderline: 40% to 49%	Satisfactory: 50% to 69%	Very good: 70% to 89%	Exemplary: >90%	
6 explain the main aspects of life cycle analysis 7 give examples of aspects of sustainable manufacturing of materials	Unable to mention the foundations of LCA on polymers. Unable to mention any aspects of sustainable manufacturing. Is not aware of any aspects of emulsion polymerization.	Able to comprehend one of the following aspects of LCA: raw material extraction, processing, manufacturing, use, reuse and disposal/recycling Able to mention one or two aspects of sustainable manufacturing. Is not aware of any aspects of emulsion polymerization.	Able to comprehend two of the following aspects of LCA: raw material extraction, processing, manufacturing, use, reuse and disposal/recycling Able to mention one or two aspects of sustainable manufacturing. Is aware of some aspects of emulsion polymerization.	Able to comprehend most of the following aspects of LCA: raw material extraction, processing, manufacturing, use, re-use and disposal/recycling Able to mention most of the aspects of sustainable manufacturing. Is aware of main aspects of emulsion polymerization.	Able to comprehend the following aspects of LCA: raw material extraction, processing, manufacturing, use, re-use and disposal/recycling Able to mention the aspects of sustainable manufacturing. Is aware of all aspects of emulsion polymerization.	
8 to apply aspects of reformulation of materials to make then more sustainable	Unable to read and understand materials science literature on formulations of materials. Unable to apply aspects of reformulation of materials to make them more sustainable.	Can read simple materials science literature and partially understand the formulation aspects. Can partially apply some aspects of reformulation of materials to make them more sustainable.	Can read simple materials science literature and understand the formulation aspects. Can partially apply some aspects of reformulation of materials to make them more sustainable.	Can read and understand materials science literature and understand the formulation aspects. Can partially apply some aspects of reformulation of materials to make them more sustainable.	Can read and understand materials science literature at a high level and understand the formulation aspects. Can apply complex aspects of reformulation of materials to make them more sustainable.	

9 to apply	Unable to apply aspects of	Can read simple materials	Can read simple materials	Can read and understand	Can read and understand
aspects of	redesigning of materials	science literature and	science literature and	materials science literature	materials science literature
redesigning	on a molecular level to	partially understand the	understand the molecular	and understand the	at a high level and
materials on a	make them more	molecular aspects. Can	aspects. Can partially	molecular aspects. Can	understand the molecular
molecular level	sustainable.	partially apply some	apply some aspects of	fully apply some aspects of	aspects. Can apply complex
to make them		aspects of redesigning of	redesigning of materials	redesigning of materials to	aspects of redesigning of
more		materials to make them	to make them more	make them more	materials to make them
sustainable		more sustainable.	sustainable.	sustainable.	more sustainable.
10 to explain	Cannot mention any	Can mention one or two	Can mention for each	Can mention for each	Can mention for each
the main	biobased building blocks	biobased building blocks	polymerization	polymerization mechanism	polymerization mechanism
biobased	and biobased replacement	but cannot place them in	mechanism one or two	the main biobased building	the main biobased building
building blocks	materials.	the appropriate	biobased building blocks	blocks and can mention	blocks and associated
and biobased		polymerization	and can mention one or	multiple biobased	challenges with using those
replacements of		mechanism. Only can	two biobased	replacement materials. Can	building blocks and can
materials		mention one or two	replacement materials.	also indicate some issues	mention multiple biobased
		biobased replacement	For neither of these can	with using these.	replacement materials with
		materials. For neither of	give further details on		their strengths and
		these can give further	issues.		weaknesses.
		details on issues.			
11 critically read	Unable to read and	Can read simple materials	Can read simple materials	Can read and understand	Can read and understand
and interpret	understand materials	science literature and	science literature and	materials science literature	materials science literature
scientific	science literature in the	partially understand the	understand the	and understand the	at a high level and
literature in the	area of sustainable	sustainability aspects.	sustainability aspects.	sustainability aspects.	understand the
area of	polymeric materials.				sustainability aspects very
sustainable					well.
polymeric					
materials					

Appendix 2

Standards	Criteria
A+ (Exceptional) A (Excellent)	Important contributions to class discussion; asks insightful questions; precisely answers questions; participates in a meaningful and constructive manner including enabling other students to contribute but does not dominate; demonstrates thoughtful ideas and opinions in a convincing manner.
A- (Very good) B+ (Good)	Meaningful contributions to class discussion; ask interesting questions; accurately answer the questions; capacity to articulate and present points of view clearly; participates in a meaningful and constructive manner; evidence of having read and assimilated the class material; Capable to demonstrate ideas and opinions in a convincing manner.
B (Average) B- (Satisfactory) C+ (Marginally satisfactory)	Some contributions to class discussion; ask some questions; some capacity to articulate and present points of view; some evidence of constructive engagement during discussion; Capable to demonstrate ideas and opinions.
C (Bordering unsatisfactory) C- (Unsatisfactory)	Minimal contributions to class discussion; ask very little questions; can answer a few questions; limited capacity to articulate and present points of view; limited evidence of constructive engagement during discussion.
D, F (Deeply unsatisfactory)	Very minimal or no contributions to class discussion; no questions; could not answer questions; no evidence of an individual viewpoint; failure to read the assigned reading; unexplained or unjustified absences from class activities.

Appendix 3

Essay (ILO 12)

Criteria	Unsatisfactory: <40%	Borderline: 40% to 49%	Satisfactory: 50% to 69%	Very good: 70% to 89%	Exemplary: >90%
Comprehension	Unable to comprehend	Partially comprehend	Comprehend some of the	Comprehend most of the	Comprehend the
The ability to	sustainability aspects of	some of the sustainability	sustainability aspects of	sustainability aspects of	sustainability aspects of
comprehend	polymeric materials. Not	aspects of polymeric	polymeric materials in	polymeric materials in	polymeric materials in
sustainability	"owning" the essay.	materials in relation to	relation to the topic of	relation to the topic of	relation to the topic of
aspects of		the topic of choice.	choice.	choice.	choice.
polymeric					
materials in					

relation to the topic of choice.					
Application Ability to apply the relevant knowledge, principles and design aspects from the course on the topic of choice.	Unable to apply sustainability aspects of polymeric materials as there are: reformulation, redesigning on molecular level, sustainably aspects during synthesis, collection and sorting, recycling, life cycle analysis. Not "owning" the essay.	apply a sustainability aspect of polymeric materials as there are: reformulation, redesigning on molecular level, sustainably aspects during synthesis, collection and sorting, recycling, life cycle analysis.	Can apply 2-3 aspects of sustainability aspects as there are: reformulation, redesigning on molecular level, sustainably aspects during synthesis, collection and sorting, recycling, life cycle analysis.	Can apply most of the sustainability aspects of polymeric materials as there are: reformulation, redesigning on molecular level, sustainably aspects during synthesis, collection and sorting, recycling, life cycle analysis.	Can apply all different aspects of sustainability in combination, as there are: reformulation, redesigning on molecular level, sustainably aspects during synthesis, collection and sorting, recycling, life cycle analysis.