

	Reg. No. 200604393R		
New Course Code and Title	MS7430: Electronic Materials	MS7430: Electronic Materials	
Instructor	Jason Xu Zhichuan		
Details of Course	Rationale for introducing this course		
	This is a specialization course focusing on electronic materials and devices. Electronic materials are a core component of many high value added, cutting edge, and functional devices. The applications include microprocessors, memory devices, displays, energy harvesting, energy storage, etc. Electronic industry forms an important part of Singapore's gross domestic products and a significant numbers of our graduates are employed by these companies.		
	Aims and objectives		
	The aim of this course is to equip the students with an understanding of the basic properties of electronic materials, the fundamental principle underlying their applications in devices, and the processing/operation of various electronic devices.		
	 At the end of this course the students will be able to Understand and explain the basic properties of electronic materials and their roles in modern technological applications. understand and explain the fundamental principles underlying the operation of various electronic devices. describe the processing of electronic devices and their integration into systems. analyse and predict future directions in the use of electronic materials and design of electronic devices. 		
	Course Syllabus (Refer to Page 2 and 3)		
	MODULE 1: BASIC PRINCIPLES OF ELECTRONIC MATERIA DEVICES MODULE 2: MATERIALS & DEVICES FOR MICRO/NANOELECTRONIC APPLICATIONS MODULE 3: MATERIALS AND DEVICES FOR ENERGY HARVESTING AND STORAGE		
Assessment	Components are assessed Individually		
	2 x Continuous Assessment (MCQ) 1 x Essay	60% 40%	
	Total:	100 %	

	Reg. No.	200604393R
To be offered with effect from (state Academic Year and Semester)	AY2018/19 Semester 2	
Any Duplication of Course	NIL	
Cross Listing (if applicable)	N/A	
Prerequisites (if applicable)	N/A	
Preclusions (if applicable)	N/A	
Mode of Teaching & Learning (Lectures, regular tests, Q&A, problem-based learning)	Lectures, tutorials, peer discussion, assessments, p	roject
Basic Reading List	Supplementary Peading	
	Supplementary Reading	
Compulsory Reading	1. Kasap, S. O. (2005). Principles of Electronic Materials and	
	Devices (3rd ed) Boston · McGraw-Hill	
Supplementary Reading	2. S M Sze, S. M. (2002). Semiconductor Devices	- Physics and
e cappionioniary reducing	Technology. New York : Wiley.	
	2 Streetman B.G. and Banerice S.K. (2016) Sc	lid State
	5. Streetman, B.O. and Banerjee, S. K. (2010). 50	ind State
	Electronic Devices (7th ed). Boston : Pearson	
	4. Nelson, J. (2003). The Physics of Solar Cells. Lo	ondon:
	Imperial College Press	
	impenal conege riess.	
Maximum Class Size		
	30	
Hours of Contact/Academic Units	39 hours/ 3 AUs	
Workload Per Week	Lecture hours per week	3 hours
(The workload for a 3-All course must add up	Tutorial hours per week	e nouro
to 20 hours of contact hours)		20 hours
		39 110018

Course Syllabus

The following topics will be covered:

MODULE 1: BASIC PRINCIPLES OF ELECTRONIC MATERIALS & DEVICES

- 1.1 Energy band theory in brief: metal, semiconductor and insulator
- 1.2 Metal-metal interface: Seebeck effect and thermocouple
- 1.3 Metal-semiconductor interface: Ohmic contact, Schottky barrier and their applications
- 1.4 Semiconductor-semiconductor interface (*pn* junction): basics of extrinsic semiconductors, space charge region, forward and reverse bias, current-voltage characteristics, etc.

MODULE 2: MATERIALS & DEVICES FOR MICRO/NANOELECTRONIC APPLICATIONS

- 2.1 Capacitor and Metal-Oxide-Semiconductor (MOS) capacitor: Dielectric response and capacitor, ideal MOS capacitor, operation of MOS capacitor, etc.
- 2.2 MOS-field effect transistor (MOSFET): Structure and properties of MOSFET, Field effect and threshold voltage, ON/OFF states of MOSFET, etc.

School of Materials Science and Engineering

Reg. No. 200604393R

- 2.3 Advanced MOSFET: Scaling of MOSFETs, Moore's law, gate oxide scaling, low k dielectric, metal interconnect scaling, etc.
- 2.4 Overview of microelectronic packaging: introduction of flip chip, wire bonding, encapsulation, etc.
- 2.5 Other relevant devices: Memory devices-floating gate FET (FLASH), DRAM (1T1C), Materials for displays application-LEDs, electrochromic, etc., Latest Advances in Materials for Micro/Nanoelectronic applications-organic polymer and small molecules for printed electronic, etc.

MODULE 3: MATERIALS AND DEVICES FOR ENERGY HARVESTING AND STORAGE

- 3.1 Silicon based solar cells: single crystal, thin film, modules, and applications etc.
- 3.2 Alternative solar cell technologies: dye sensitized cells-working principles, hybrid perovskites solar cells, materials selection & design, etc.
- 3.3 Thermoelectric materials & devices: working principles, materials selection, etc.
- 3.4 Energy storage: rechargeable battery, supercapacitor etc.
- 3.5 Other energy related technologies: fuel cells, etc.