REVISED COURSE CONTENT

New Course Code and Title	MS7310: Chemical Analysis of Materials (2AU)	
Details of Course	Rationale for introducing this course	
	This course will cover the subject of chemical analysis of materials. Chemical analysis of materials is wherein the composition and chemical information of various materials and properties are probed and measured. This course will focus specifically on different spectroscopic analytical techniques of chemical analysis of materials. It will cover surface chemical analysis to bulk chemical analysis of materials.	
	Aims and objectives	
	The aim of this course is to cover fundamental principles of some of the spectroscopic chemical analysis of materials techniques, their instrumentation and applications.	
	At the end of this course the students will describe the working principles of IR, UV-VIS, XRF and XPS,	
	 analyze data acquired from each of the spectroscopic techniques 	
	 recommend suitable techniques for evaluating material properties with clear justifications, and 	
	 integrate information from multiple datasets to make deductions about material properties 	
	Course Syllabus (Refer to below)	
	 Infrared Spectroscopy Ultra violet visible Spectroscopy X-ray Fluorescence Spectroscopy X-ray photoelectron Spectroscopy 	

Assessment (Individual and Group Assessment)	Mode of Assessments and weighting Instructions Mapping of assessment to course objectives • LO1. Describe the working principles of UV-VIS, IR, XRF and XPS • LO2. Analyse data acquired from each of the analytical techniques • LO3. Recommend suitable techniques for evaluating material properties with clear justifications. • LO4. Integrate information from multiple datasets to make deductions about material	4 Tutorials – 40% (Individual) CA: MCQs + short answer essays -30% (Individual) Research paper critique: peer review -30% (Individual) Total – 100% CA: 10-20 questions, Open book, Randomised Questions and Options (MCQ) and short answer essays (All content) Research paper critique: All content CA : LO1, LO2, LO3, LO4 Peer review: LO2, LO3 and LO4
Hours of Contact/Academic Units	26 hours / 2 AU	
Proposed Date of Offer	AY2020/21 Semester 1	
Instructor and Co-instructor (if any)	Dr. Fong Wen Mei Eileen	
Class size	30	
Mode of Teaching & Learning (Lectures, regular tests, Q&A, problem-based learning)	Lectures, tutorials, assessments	
Any duplication of course School is advised to coordinate/check with the School offering the course to avoid duplication.	No	

Course Syllabus

The following topics will be covered:

1. Introduction to Spectroscopy

Spectroscopy definition, Types of spectroscopy, Data obtained/analysis, uses of spectroscopy in chemical analysis

2: Infra-red Spectroscopy

Molecular vibrations, concept of wavenumber, Group frequencies, finger print vibrations, sample preparation, applications

3: Ultra Violet visible Spectroscopy

Background, absorption spectra, ligand field theory, d-d transitions, Beer-Lambert's law, quantitative analysis, applications

4: X-ray Fluorescence Spectroscopy

Theory, wavelength and energy dispersive spectrometry (WDS and EDS), Qualitative and Quantitative analysis, Instrumentation, Applications

5: X-ray Photoelectron Spectroscopy

Introduction, Background principle, Photoelectron/Auger peaks, Chemical Shift, Spin orbit splitting, Depth profiling, Data analysis, applications