New Course Code and Title	MS7240 Modelling of Materials (1AU)		
Course Coordinator	AP Zhao Yang		
Details of Course	Rationale for introducing this course		
	This course provides an introduction to modelling of materials, to enable students to investigate materials properties at different length and time scales in situations when experiments are not feasible or expensive.		
	Aims and Objectives: The aim of this course is to introduce some of the more important computational modelling techniques such as continuum methods, atomistic and molecular simulation, and quantum mechanics.		
	Students will gain insights into some fundamental, theoretical and numerical concepts through some examples which illustrate the principles.		
	At the end of this course the students will:		
	 Explain the different techniques of computational modelling of materials; Differentiate between the usage of Finite Element Method, Molecular Dynamics simulations, and ab-Initio quantum mechanical modelling; Appreciate the utility of computational modelling as an aid to uncover underlying physics of experimental studies. 		
	Course Syllabus Refer to page 3 and 4		
Assessment (Individual Assessment)	Assessment Points	3	
	Mode of Assessments and weighting	Tutorial 1: Short structured questions, Case Studies Tutorial 2: Case studies CA 1: Case Studies	30% 20% 50%
			100%

Appendix B

	Manning of according to	Tutorial 4, 1,04, and 1,02	
	Mapping of assessment	Tutorial 1: LU1 and LU2	
	to course objectives		
	LO1: Explain the		
	different techniques		
	of computational		
	modelling of		
	materials;		
	LO2: Differentiate		
	between the usage of		
	Finite Element		
	Method, Molecular		
	Dynamics		
	simulations, and ab-		
	Initio quantum		
	mechanical		
	modelling.		
	LO3: Appreciate the		
	utility of		
	computational		
	modelling as an aid		
	to uncover underlying		
	physics of		
	experimental studies.		
To be offered with effect	AY2018/19 Semester 1		
from			
(state Academic Year and			
Semester)			
Cross Listing (if	N//A		
applicable)	107.		
Prerequisites (if	N/A		
applicable)			
Preclusions (if applicable)	N/A		
Made of Tecohing 0	Lestures Degular Testa C	Secure Cana	
	Lectures, Regular Tests, Simulations		
Learning			
(Lectures, regular tests,			
Q&A, problem-based			
Rasic Reading List	Supplementary Reading:		
Compulsory	Supplementary reduing.		
Reading	The papers and books as mentioned in the recorded lectures and		
Reading	citation list		
Supplementary			
Reading			
Hours of	13 hours/ 1 AU		
Contact/Acadomic Unite			

Course Syllabus

The following topics will be covered:

Module 1: Basics of Modelling and Simulation

- 1. Why Model and Simulate?
- Why Model & Simulate
- Examples
- Advantages of Simulations
- Drawbacks of Simulations.
- 2. Multiscale Modelling
- Length
- Time
- Temperature
- Energy
- 3. Methods of Modelling
- Process of simulation
- Types of simulation
- Software
- Coding
- Introduction to coding in Python

MODULE 2: Materials Simulation: Classical Methods

- 1. Finite Element Method
- Application
- Limitation
- Process
- 2. Molecular Dynamics
- Procedure
- Softwares
- Applications
- 3. Modelling Diffusion
- Heat diffusion: 1D and 2D
- Particle Diffusion
- Exciton Diffusion

MODULE 3: Materials Simulation: Quantum Methods

- 1. Introduction to Quantum Mechanics
- Notation in QM
- Eigenstate and Eigenvalue
- Schrödinger Equation
- Particle in a box
- Harmonic Oscillator
- Plane Waves
- 2. Tight Binding Model
- Direct and Reciprocal Lattice
- Principles

- -
- Finite System Application Infinite Periodic System Application
- Density Functional Theory (DFT)
 Principles
 Applications