Course Code and Title	MS7210: Processing of Inorganic Materials		
Instructor	Dr Long Yi		
Details of Course	Rationale for introducing this course		
	The processing techniques used to manufacture materials and components is a very broad activity encompassing materials science, mechanical engineering, chemistry and economics. Commercial processing is now accomplished by automated and computer controlled equipment yet the engineers must understand the basic principles to program and control the parameters. This course is to develop the scientific base and fundamental nature of some common processes.		
	Aims and objectives		
	The aim of this course is to provide students with the basic understanding of manufacturing processes, and the relationships between process design and fundamental concepts in transport phenomena, and properties.		
	 At the end of this course the students will be able to 1. Explain the relationships between basic concepts and design of the processing route. 2. Apply basic concepts to predict the material behaviour during processing. 3. Predict the structure and properties of the end products 		
	 List the advantages and limitations of each process. Choose the best process for a particular component, device or material. 		
	Course Syllabus (Refer to page 2)		
	Module 1 : Processes for Particulate Materials and bulk materials Module 2: Vacuum Processes Module 3: Solution Processes		
Assessment	Components are assessed Individually		
	1 x Continuous Assessment 1 x Oral Presentation 1 x Review Paper Total:	50% 25% 25% 100 %	
To be offered with effect	AY2018/19 Semester 2		
from (state Academic Year and Semester)			
Any Duplication of	NIL		
Cross Listing (if	N/A		
applicable) Prerequisites (if	N/A		
Preclusions (if applicable)	N/A		
- (

Mode of Teaching & Learning (Lectures, regular tests, Q&A, problem-based learning)	Lectures, MCQ, tutorials, as	sessments	
Basic Reading List	Supplementary Reading		
Compulsory Reading	1. Ohring, M. (2002). The materials science of thin films. (2nd ed).		
	San Diego, CA : Academic Press		
	2. Smith, D.L. (1995). <i>Thin-film deposition, principles and practice.</i>		
 Supplementary 	Boston : McGraw-Hill		
Reading	3. Mitzi, D. B. (Editor) (2009). Solution Processing of Inorganic		
	Materials. Hoboken, New Jersey : Wiley		
	4. Barsoum, M. X. (2002). Fundamentals of Ceramics, CRC Press		
Maximum Class Size	30		
Hours of	39 hours/ 3 AUs		
Contact/Academic Units			
Workload Per Week	Lecture hours per week	3 hours	
(The workload for a 3-AU	Tutorial hours per week		
course must add up to 39 hours of contact hours)	Total hours	39 hours	

Course Syllabus

The following topics will be covered:

MODULE 1 : PROCESSES FOR PARTICULATE MATERIALS AND BULK MATERIALS

1.1: Powder synthesis

Methods for powder production and blending. Particle shape and size distribution. Properties of powders. **1.2: Compaction of Powders**

Various densities. Pressing. Isostatic pressing. Metal injection moulding. Sintering and mechanisms. Processing ceramics, cermet and composite. Properties of sintered products.

MODULE 2: VACUUM PROCESSES

2.1: Vacuum

Introduction to vacuum technology, systems, pumps and gauges. Units of pressure. Deposition chambers, target and substrate preparation.

2.2: Physical vapor deposition

Physical vapour deposition processes and sputtering. Polycrystalline and epitaxial film production. Effects of substrates

2.3: Chemical vapor deposition

Films and nanostructures from gas precursors. Atomic layer deposition. Nanoscale control of film chemistry.

2.4: Growth progress and Microstructure control

Zone structure model, amorphous and crystallinity control, pore control and defects evolutions.

MODULE 3: SOLUTION PROCESSES

3.1: Basic Principles

Precursor solutions, reaction rates, ligand additives for size and shape control.

3.2: Sol Gel

The principal of Sol gel and the related process. Morphology control, Chemical reaction of sol gel, the advantages and disadvantages of sol gels.

3.3: Chemical Solution Deposition — Basic Principles

Basics of sol-gel, chelate and related processes. Film formation: spin coating, dip coating and spray coating. Spray pyrolysis. Examples of chemical synthesis. Examples of chalcogenide semiconductor synthesis.