Course Code and Title	MS7130: Organic Materials
Details of Course	Summary of course content
	This course will cover the subject of organic materials. Organic materials cover both bulk commodities such as polyolefins, natural biological materials and bio-inspired materials with medical and other applications, new cutting edge materials such as graphene and carbon nanotubes, and organic colourants and semiconductors with optical and electronic properties that can be tuned for use in applications such as organic electronic devices, including biosensors, LED displays, and organic solar cells, and medical applications such as biomarkers for imaging. A materials approach will be adopted. The processing-structure-property-performance paradigm will be employed. The structural, optical and electronic properties of organic materials will be discussed as will the interrelationship between synthesis, characterization and applications will be discussed.
	Rationale for introducing this course
	The rationale of introducing this course is to cover functional organic materials and their applications employing a processing-structure-property-performance framework.
	Aims and objectives
	 At the end of this course the students will Obtain an understanding of organic materials and their role in modern technological applications. Understand the functional requirements of organic materials for various applications. Critically analyze and predict future directions in organic materials
	Course Syllabus
	(Refer to below)
Assessment	3 x Tutorials – 30% CA1: MCQs – 25% CA2: MCQs – 25% Research paper critique: peer review – 20%
Hours of Contact/Academic	
Units	
Proposed Date of Offer	Semester 1, AY2021-22
Instructor and Co-instructor (if any)	Assoc Prof Andrew Grimsdale
Class size	30
Any duplication of course	No

Course Syllabus

The following topics will be covered:

MODULE 1: Fundamental Properties and Principles of Organic Materials

- Introduction to organic materials

 Allotropes of carbon.
 Types of organic materials --Polymers versus molecules.
- Bonding in organic molecules

 Hybridisation of carbon (sp³, sp², sp).
 Covalent bond types properties and chemistry of □ vs □-bonds.

MODULE 2: Structural Organic Materials

- Polyolefins

 Synthesis of polyethylene and polypropylene (Ziegler-Natta)
 Structure-property relationships in PP (tacticity)
 Applications.
- Substituted polyolefins

 Polystyrene- synthesis and applications.
 Radical and anionic polymerisations.
- Carbon nanotubes and carbon fibres

 Synthesis and structure-property relationships.
 Use of CNTs and carbon fibres (composites).
- 4. Condensation polymers -Synthetic methods. Nylon. Kevlar.
- 5. Introduction to Bio-materials -Proteins and other types of biopolymers.
- Biomaterials as structural materials

 Examples of structural biomaterials, including cellulose, lignins, chitin and spider silk.

MODULE 3: Electronic Properties of Organic Materials

- Introduction to conjugated materials

 Introduction to conjugation and bandgaps.
 Types of conjugated materials
- Graphene and Nanotubes

 Preparation and applications of graphene.
 Structure and electrical properties of carbon nanotubes.
- Polyacetylene

 Synthesis and doping of polyacetylene.
 Origin of conductivity.
- Other conducting polymers

 Synthesis, properties and applications of other conducting polymers including -PEDOT and polyaniline.

- Semiconducting organic materials

 Introduction to semiconductors.
 Classes of organic semiconductors.
- Molecular materials for transistors.
 -Acenes and oligomers.
 -Synthesis and processing.
 -Structure-property relationships.
- Regioregular polythiophene

 Regiorandom versus regioregular polythiophene.
 Synthesis,
 Structure property relationships.
- High mobility copolymers

 Donor-acceptor polymers for high mobility.
 Synthesis and processing.
 Structure-property relationships.

MODULE 4: Optical Properties of Organic Materials

- Introduction to colour.
 Origins of colour absorption, emission, photonics.
- Dyes and pigments

 Difference between dyes and pigments.
 Synthesis and applications, e.g. bioimaging, of coloured materials.
- Dye-sensitised solar cells

 Mechanism of dye-sensitised solar cells.
 Dyes for solar cells.
 Perovskite solar cells,
- Electron donors for solar cells

 Bulk-heterojunction solar cells
 Polymer donors for high efficiency design and synthesis.
- Electron acceptors for solar cells

 Fullerenes as acceptors
 Non-fullerene acceptors
- Organic luminescence

 Origins of emission in organic materials fluorescence versus phosphorescence.
 Types of organic emitters small molecules versus polymers
- Materials for LEDs

 Structure-property relationships
 Super Yellow
- Frontiers in OLEDs

 Search for stable blue emitters
 Phosphorescent materials
 White emission

MODULE 5: Analysis of Organic Materials

- Introduction to analysis of organic materials

 Overview of methods used in analysis of organic materials: SEC
 Thermal methods, spectroscopy
 Microscopy
 X-ray diffraction
- Size Exclusion Chromatography

 -Uses and limitations of SEC.
 -Alternative methods for determining molar mass of polymers.
- TGA and DSC
 Principles and use of TGA and DSC for analysis of organic materials.
- IR and Raman spectroscopy
 Vibrational spectroscopy by IR and Raman principles, uses and limitations.
- UV-Vis and PL spectroscopy -Principles,
 -Uses and limitations of UV and PL spectroscopy.
- 6. NMR spectroscopy
 -Principles,
 -Uses and limitations of 1H and 13C NMR spectroscopy,
 - -Including 2D NMR and solid-state NMR.
- Microscopy

 Introduction to optical,
 Electron and scanning microscopies and their use in analysing organic materials.
- Electrical characterization of organic materials.
 Introduction to techniques such as CV,
 Mobility measurements used in electronic characterization of organic materials.