
www.scse.ntu.edu.sgwww.ntu.edu.sg

• Study different vulnerabilities in smart contracts and understand their causes.
• Investigate the use of different tools to build a proof-of-concept to automate vulnerabilities’ discovery in smart

contracts.

OBJECTIVE:

Gas-Aware Instrumentation for Solidity Smart Contract
Runtime Monitoring

STUDENT: ROYSTON BEH ZHI YANG FYP AY19-20 SEMESTER 2
SUPERVISOR: AST PROF LI YI SCSE19-0028

PROBLEM:

BECToken: Successfully prevent attack from occurring
Useless Ethereum Token: Provide useful logging information to prevent attack
Working Proof of Concept for full automation of Run-Time Analysis

RESULTS:

1 function batchTransfer(address[] memory _receivers, uint256 _value)
public whenNotPaused returns (bool) {

2 checkTotalAmount();
3 uint cnt = _receivers.length;
4 uint256 amount = uint256(cnt) * _value;
5 require(cnt > 0 && cnt <= 20);
6 require(_value > 0 && balances[msg.sender] >= amount);
7 balances[msg.sender] = balances[msg.sender].sub(amount);
8 for (uint i = 0; i < cnt; i++) {
9 addOwner(_receivers[i]);
10 balances[_receivers[i])=balances[_receivers[i]].add(_value);
11 emit Transfer(msg.sender, _receivers[i], _value);
12 }
13 checkTotalAmount();
14 return true;
15 }

If ‘_value’ is large, it may cause integer overflow.

Unexpected Result: amount is lesser than ‘_value’
This line will pass with no error.

The receiver can get large amount of tokens when
it is not supposed to.

Poorly written smart contracts are susceptible to hacks. One notorious example is the “DAO” attack, which results in more than
$45 million USD stolen. The example we are examining is the “batchTransfer” for Beauty Token (BEC). By exploiting the
integer overflow, attackers can generate an extremely large amount of tokens, and deposit them into a normal address.

SOLUTION:

In this project, the first tool we are using is the Solidity Instrumentation
Framework (SIF) to insert code for run-time monitoring. In this case, we
inserted the “checkTotalAmount” function.
It ensures the total supply of tokens is equal to the sum of tokens of each
address.

Other tools used:
1. Truffle Suite for Automation of Tests
2. Modified Solidity Compiler
3. Modified Ethereum Virtual Machine If there is any arithmetic error, the transaction is

reverted.

Check that there is no
integer overflow for addition

of sum and tokens of any
account

Check that there is
no overflow or

underflow of tokens

