CV5101 SUSTAINABLE BUILT ENVIRONMENT

Academic Year	2023-24	Semester	2
Course Coordinator			
Course Type	Broadening and Dee	epening Elective	
Pre-requisites	Nil	·	
AU	3		
Grading	Letter Grading		
Contact Hours	39 (39 hours Lecture)		
Proposal Date	16 October 2023		

Course Aims

This course aims to equip you with up-to-date knowledge on the current and emerging environmental issues concerning sustainable built environment. During this course, you will attain an understanding of the environmental challenges facing the construction industry, and discuss building, urban planning, geotechnical, and life cycle assessment concepts from a sustainability perspective. You will also learn how to identify crucial environmental problems and develop potential suggestions to alleviate their adverse effects on the environment, which will be useful for future engineering courses and careers.

Intended Learning Outcomes (ILO)

By the end of this course, student will be able to:

- 1. Explain different sustainability concepts concerning sustainable built environment
- 2. Identify key environmental issues in the areas of building, urban planning, and geotechnical
- 3. Evaluate the impact of human actions on environment by using various sustainability evaluation tools, such as life cycle assessment
- 4. Assess the viability of potential solutions proposed for a broad range of global environmental issues
- 5. Develop technical solutions to reduce the impacts of different environmental problems

Course Content

No	Торіс	Lecture Hours
1	Built environment and sustainability	12
2	Life Cycle Assessment	9
3	Urban planning and sustainable development	9
4	Geotechnical engineering and sustainability	6

5	Integrated civil and environmental engineering projects	3
	Total	39

Assessment (Includes both continuous and summative assessment)

Component	ILO Tested	EAB Graduate Attributes	Weightage	Team / Individual	Rubrics
1. CA1: Team Project	1, 2, 3, 5	, c, d, g, i, j	40% x MF*	Team & Individual	Appendix 1
2. Final Examination	2, 3, 4	b, g	60%	Individual	N.A.
Total			100%		

Team component is about the quality of the team project report. Individual component includes the presentation performance for individual team members and peer review result.

To account for Individual Contribution to the team project, the Modification Factor (MF) will be applied to the team project with peer review.

	EAB Graduate Attributes ¹
a)	Engineering Knowledge Apply the knowledge of mathematics, natural science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
b)	
c)	Problem Analysis Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
d)	Design / Development of Solutions Design solutions for complex engineering problems and design systems, components or processes that meet the specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
e)	Investigation Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
f)	Modern Tool Usage Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
g)	The Engineer and Society Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
h)	Environment and Sustainability Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for the

¹ Reference: <u>EAB Accreditation Manual</u>

	sustainable development.			
i)	Ethics			
	Apply ethical principles and commit to professional ethics and responsibilities and			
	norms of the engineering practice.			
j)	Individual and Team Work			
	Function effectively as an individual, and as a member or leader in diverse teams and in			
	multidisciplinary settings.			
k)	Communication			
	Communicate effectively on complex engineering activities with the engineering			
	community and with society at large, such as, being able to comprehend and write			
	effective reports and design documentation, make effective presentations, and give and			
	receive clear instructions.			
I)	Project Management and Finance			
	Demonstrate knowledge and understanding of the engineering management principles			
	and economic decision-making, and apply these to one's own work, as a member and			
	leader in a team, to manage projects and in multidisciplinary environments.			
m)	Life-long Learning			
	Recognise the need for, and have the preparation and ability to engage in independent			
	and life-long learning in the broadest context of technological change.			

Formative Feedback

You will be receiving feedback on your progress via the in-class activities, during which we will solve sample problems together. You will also get the chance to hear others' opinions on different environmental issues throughout the in-class discussions.

Learning & Teaching Approach

Approach	How does this approach support students in achieving the learning outcomes?
LEC	Weekly lectures to provide you with the necessary knowledge to achieve the intended learning outcomes.
Team Project	Team project to enable you to collaborate in the development of sustainable solutions to pressing environmental issues.

Readings & References

- 1. Christensen, N. The Environment and You. 3rd Edition. Pearson, 2018
- 2. Allenby, B.R. The Theory and Practice of Sustainable Engineering. Pearson, 2012
- 3. Mihelcic, J.R. and Zimmerman, J.B. Environmental Engineering: Fundamentals, Sustainability, Design. 3rd Edition. Wiley, 2021

Course Policy & Student Responsibility

- 1. Final Exam (60%):
 - The final exam will be tested on all materials that are covered from week 1 to 13.
- 2. Team Project (40%):
 - The team project will relate to the subject. Each team will submit one final report at the end of the project. Each team shall give a presentation on the group's work at the end of term.

(1) General

Students are expected to complete all assigned pre-class readings and activities, attend all classes punctually and take all scheduled assignments and tests by due dates. Students are expected to take responsibility to follow up with course notes, assignments and course-related announcements for sessions they have missed. Students are expected to participate in all discussions and activities.

(2) Absenteeism

Absence from continuous assessment without a valid reason will affect your overall course grade. Valid reasons include falling sick supported by a medical certificate and participation in NTU's approved activities supported by an excuse letter from the relevant bodies. There will be no make-up opportunities for in-class activities.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognise your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating.

As of on the use of technological tools (such as Generative AI tools), different courses / assignments have different intended learning outcomes. Students should refer to the specific assignment instructions on their use and requirements and/or consult your instructors on how you can use these tools to help your learning.

If you are uncertain about the definitions of any of these terms, you should refer to the <u>Academic</u> <u>Integrity at NTU (sharepoint.com)</u> for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Course Instructors

Instructor	Office	Phone	Email
Wang Zhiwei (WZW)	N1-01C-75	6790 5281	angzhiwei@ntu.edu.sg
Chew Ah Seng, David (DCAS)	N1-01B-48	6790 5300	caschew@ntu.edu.sg
Robert Tiong (RT)	N1-01C-72	6790 5253	clktiong@ntu.edu.sg
Qian Shunzhi (QSZ)	N1-01C-79	6790 4916	szqian@ntu.edu.sg
Yi Yaolin (YYL)	N1-01C-94	6790 6309	yiyaolin@ntu.edu.sg

Planned Weekly Schedule

Week	Торіс	Course ILO	Readings / Activities
1 - 4	Built environment and sustainability	1, 2, 3, 4, 5	Lectures and in- class activities
5 - 7	Life Cycle Assessment	2, 3, 4, 5	Lectures and in- class activities
8 - 10	Urban planning and sustainable development	1, 2, 3	Lectures and in- class activities
11 - 12	Geotechnical engineering and sustainability	1, 2, 3, 4, 5	Lectures and in- class activities
13	Integrated civil and environmental engineering projects	2, 3, 4, 5	Lectures and in- class activities

Appendix 1: Team Project (40%)

Criteria	<u>Good (16-20)</u>	<u>Ave (11-15)</u>	<u>Fair (6-10)</u>	<u>Poor (0-5)</u>
Report – Introduction on Background, Conclusions and References (20%)	Well defined problem; clear objectives; well- supported conclusions; proper and well- formatted in-text citations	Well defined problem; clear objectives; conclusions and in- textcitations are of good quality	Consistent problem definition and objective, conclusions and in-text citations are of acceptable quality	Problem not well defined; unclear objective; irrelevant conclusion and citations.
Report – Investigation methodology, Approaches or Mitigation Measures, Novelty of the project (20%)	balanced summary of approaches or measures to tackle	the problem, overall	acceptable summary of approaches to	Invalid investigation methodology, lack of summary of approaches to tackle the problem, No novelty.
Presentation – PPT Slide Content (20%)		Clear expression with minor language mistakes, appropriate tables/Figures		Not Clear nor concise; many major language mistakes, informative Tables/Figures
Presentation – Teamwork (20%)	Excellent coordination between the team members. Excellent transitions and connections between slides	Good coordination between the team members. Good transitions and connections between slides.		No coordination between team members; non- smooth transitions.
Presentation - Individual Contribution (20%)	and answer all	Good presentation and answer most of questions well and reasonably	presentation and answer some of questions well and	Not clear presentation and cannot answer the questions well

Assessment Criteria for Group Project and Presentation by Tutors

Assessment Criteria for Peer Review

Criteria	Outstanding: 4	Good: 3	Meet expectation: 2	Below expectations: 1
Teamwork, Collaborative behaviour	Cooperative and always deliver assigned tasks on time. Take initiative to help other to ensure success of team project.	Cooperative and always deliver assigned tasks on time. Willing to assist others upon request.	Stop short at delivering assigned tasks, sometimes after reminder(s).	Non- cooperative, non-committed, always miss deadlines.
Quality of works	Quality of works higher than overall group quality, or go extra miles to assist teammate to enhance the quality of group works.	Good quality of deliverables under individual responsibility.	Acceptable quality of deliverables under individual responsibility.	Quality of works not acceptable.
Ideas & participations	Active participation and initiatives, good ideas & suggestions in enhancing the quality of group works.	Suggestions and ideas to enhance the quality of group works.	Somewhat contribution in enhancing the quality of group works.	Did not participate in group works.

Average Peer Assessment Score	MF	
3.51 to 4.00	1.05	
2.76 to 3.50	1.00	
2.51 to 2.75	0.95	
2.00 - 2.50	0.9	
Below 2.00	Separate Assessment	

Peer assessment exercise will be anonymous and done towards the end of the semester. For student who has average peer assessment score below 2.0, Course coordinator might contact/call up the student as well as the other team member(s) to further assess the appropriate MF. In addition, MF might be moderated by course coordinator based on the interaction during consultation and feedbacks from the team members.