CV4116 Coastal Engineering

Academic Year	2023-24	Semester	2	
Course Coordinator				
Course Type	Major Prescribed Elective / Unrestricted / Broadening and Deepening			
	Elective			
Pre-requisites	CV2020 Water Resources Engineering			
AU	3			
Grading	Letter Grading			
Contact Hours	39 (Lecture: 26 hours & Tutorial: 13 hours)			
Proposal Date	12 September 2023	· · · · ·		

Course Aims

This is a course on coastal engineering and its applications. The course provides a fundamental understanding of coastal engineering covering basic principles of coastal water fluctuations, wind wave processes, linear water wave theory and wave mechanics, and sediment transports. It also covers the basic analysis of coastal structures such as involving the use of Morison's equation, and understandings of coastal protection, breakwater and harbour design.

Intended Learning Outcomes (ILO)

By the end of this course, student will be able to:

- 1. Analyse tidal fluctuations levels via its tidal components.
- 2. Identify different components of coastal water level fluctuations
- 3. Apply linear wave theory to determine wave conditions at various offshore coastal locations.
- 4. Quantify statistical measures of wave parameters such as wave heights and return periods.
- 5. Use Morison equation in calculations of wave loads
- 6. Differentiate between different types of coastal structures and their functions
- 7. Perform design of vertical wall and rubble mound structures.

Course Content

S/N	Торіс	Lecture	Tutorial
		Hrs	Hrs
1.	Coastal water level fluctuations: tides, storm surge, tsunami,	6	3
	seiches, sea level rise; Wind wave generation and analysis		
2.	Mechanics of wave motion: linear wave theory, wave kinematics,	5	3
	wind wave generation, wave refraction, diffraction and reflection.		
3.	Coastal processes: beach sediment properties and analysis. Beach profiles. Surf dynamics and sediment transport. Beach stability.	2	1
4.	Design wave characteristics: breaking and non-breaking waves, extreme waves	3	1
5.	Wave forces on cylinders. Morison equation.	3	2

6.	Types of coastal structures and coastal protection. Design of		2
	vertical walls and rubble mound structures.		
7.	Breakwater types and design. Toe protection.	3	1
	Total:	26	13

Assessment (Includes both continuous and summative assessment)

Component	ILO Tested	EAB Graduate Attributes	Weightage	Team / Individual	Rubrics
1. CA1: Quiz 1	1, 2, 3, 4, 5, 6	(a), (b), (c) & (l).	20%	Individual	N.A.
2. CA2: Quiz 2	1, 2, 3, 4, 5, 6	(a), (b), (c) & (l).	20%	Individual	N.A.
3. Final Examination	1, 2, 3, 4, 5, 6	(a), (b), (c) & (l).	60%	Individual	N.A.
Total			100%		

EAB Graduate Attributes ¹			
a)	Engineering Knowledge		
	Apply the knowledge of mathematics, natural science, engineering fundamentals, and an		
	engineering specialisation to the solution of complex engineering problems.		
b)	Problem Analysis		
	Identify, formulate, research literature, and analyse complex engineering problems		
	reaching substantiated conclusions using first principles of mathematics, natural sciences,		
2)	Design / Development of Solutions		
0)	Design solutions for complex engineering problems and design systems, components or		
	processes that meet the specified needs with appropriate consideration for public health		
	and safety, cultural, societal, and environmental considerations.		
d)	Investigation		
,	Conduct investigations of complex problems using research-based knowledge and		
	research methods including design of experiments, analysis and interpretation of data, and		
	synthesis of the information to provide valid conclusions.		
e)	Modern Tool Usage		
	Create, select, and apply appropriate techniques, resources, and modern engineering and		
	If tools including prediction and modelling to complex engineering activities with an		
t)	The Engineer and Society		
1)	Apply reasoning informed by the contextual knowledge to assess societal health safety		
	legal and cultural issues and the consequent responsibilities relevant to the professional		
	engineering practice.		
g)	Environment and Sustainability		
5/	Understand the impact of the professional engineering solutions in societal and		
	environmental contexts, and demonstrate the knowledge of, and need for the sustainable		
	development.		
h)	Ethics		

¹ Reference: <u>EAB Accreditation Manual</u>

	Apply ethical principles and commit to professional ethics and responsibilities and norms
	of the engineering practice.
i)	Individual and Team Work
	Function effectively as an individual, and as a member or leader in diverse teams and in
	multidisciplinary settings.
j)	Communication
	Communicate effectively on complex engineering activities with the engineering
	community and with society at large, such as, being able to comprehend and write effective
	reports and design documentation, make effective presentations, and give and receive
	clear instructions.
k)	Project Management and Finance
	Demonstrate knowledge and understanding of the engineering management principles and
	economic decision-making, and apply these to one's own work, as a member and leader
	in a team, to manage projects and in multidisciplinary environments.
I)	Life-long Learning
	Recognise the need for, and have the preparation and ability to engage in independent
	and life-long learning in the broadest context of technological change.

Formative Feedback

- 1. Feedback will be through dissemination of your performance in quizzes as well as review of the quiz questions in class. Follow-up consultation will be arranged as needed.
- 2. Besides having interactive discussion during tutorial, we encourage you to initiate individual consultation sessions on your particular learning needs

Learning & Teaching Approach

Approach	How does this approach support students in achieving the learning outcomes?		
Lecture	Formal lectures on the topics with examples		
Tutorial	In depth discussion of tutorial problems with step-by-step solution process discussion.		

Readings & References

Textbooks:

1. Basic coastal engineering by Robert M Sorensen. Springer Science+Business Media 2006, 3rd Edition.

Reference:

- 1. United States Coastal Engineering Research Center., "Shore Protection Manual", Vol.1 and 2, Vicksburg, Mississippi, US Army Coastal Engineering Research Center, 1984.
- 2. Coastal Engineering Manual. US Army Coastal Research Center, 2002.

3. Coastal Engineering: Processes, Theory and Design Practice, by D. Reeve, A. Chadwick, and C. Fleming. Spon Press, 2004

Course Policy & Student Responsibility

(1) General

Students are expected to complete all assigned pre-class readings and activities, attend all seminar classes punctually and take all scheduled assignments and tests by due dates. Students are expected to take responsibility to follow up with course notes, assignments and course-related announcements for seminar sessions they have missed. Students are expected to participate in all seminar discussions and activities.

(2) Absenteeism

Absence from quiz without a valid reason will affect your overall course grade. Valid reasons include falling sick supported by a medical certificate and participation in NTU's approved activities supported by an excuse letter from the relevant bodies.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognise your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. On the use of technological tools (such as Generative AI tools), different courses / assignments have different intended learning outcomes. Students should refer to the specific assignment instructions on their use and requirements and/or consult your instructors on how you can use these tools to help your learning. If you are uncertain about the definitions of any of these terms, you should refer to the <u>Academic Integrity Handbook</u> for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Course Instructors

Instructor	Office	Phone	Email

Planned Weekly Schedule

Week	Торіс	Course ILO	Readings/Activities
1	Introduction and coastal water level fluctuations	1	Lectures and Tutorials
2	Coastal water level fluctuations	1	Lectures and Tutorials
3	Wind wave generation and analysis	1	Lectures and Tutorials
4	Linear Water theory	2	Lectures and Tutorials
5	Wave mechanics	2	Lectures and Tutorials
6	Wave transformation and Coastal sediment transport	2,3	Lectures and Quiz
7	Coastal sediment transport Extreme waves and Weibull distribution	4	Lectures and Tutorials
8	Design wave specification	4	Lectures and Tutorials
9	Morison equation - theory	5	Lectures and Tutorials
10	Morison equation – nonlinear extension using stream function theory	5	Lectures and Tutorials
11	Wave forces on vertical wall structures	6	Lectures and Tutorials
12	Types of coastal structures; breakwater design	6,7	Lectures and Quiz
13	Rubble mound structures and toe protection	7	Lectures and Tutorials