

Teaching, Learning and Pedagogy Division

Reg. No. 200604393R

PROPOSED COURSE OUTLINE TEMPLATE FOR STUDENTS AT NTU

Academic Year	2020-2021	Semester	S1	
Course Coordinator	Asst. Prof. Chong Tzyy Haur			
Course Code	CV3015			
Course Title	Environmental Engineering			
Pre-requisites	CV1012 – Fluid Mechanics			
No of AUs	3			
Contact Hours	Total: 39 hours (Lecture: 26 hours; Tutorial: 13 hours)			
Proposal Date	20-May 2020			

Course Aims

This course aims to provide you with an overview of general environmental engineering principles, which integrate science and engineering principles to improve the natural environment (air, water, and land resources), to provide healthy water, air and land for human habitation and for other organisms, and to remediate pollution sites. Environmental engineering is vital for our future as we need to protect the earth for those who live here tomorrow.

Intended Learning Outcomes (ILO)

By the end of this course, you (as a student) should be able to:

- 1. Calculate the water use and wastewater generation.
- 2. Explain basic water quality parameters and wastewater characteristics.
- 3. Discuss the working principle and design of unit processes for water treatment.
- 4. Discuss the working principle and design of unit processes for wastewater treatment.
- 5. Classify solid wastes and air quality; discuss solid waste management and the impacts of air pollution.

Course Content

Topic 1: Water Use Topic 2: Water Quality and Standard Topic 3: Water Treatment Processes Topic 4: Wastewater Generation and Characteristics Topic 5: Wastewater Treatment Processes Topic 6: Biological Treatment process Topic 7: Solid Waste Management Topic 8: Air Quality

Component	Course LO Tested	Related Programme LO or Graduate Attributes	Weighting	Team/Individual	Assessment rubrics
1. Final Examination	1, 2, 3, 4, 5	CVE SLOs (2018) a, b, g	60%	Individual	Appendix 1
2. Continuous Assessment 1 (CA1): Quiz 1	1, 2, 3	CVE SLOs (2018) a, b, g	20%	Individual	Appendix 1
3. CA2: Quiz 2	4, 5	CVE SLOs (2018) a, b, g	20%	Individual	Appendix 1
Total			100%		

Formative feedback

For CA1 and CA2, the questions and solutions will be discussed with you after the quiz. You will be informed of the median grade and individual grade will be uploaded in NTULearn.

Learning and Teaching approach

Approach	How does this approach support students in achieving the learning outcomes?
e-learning	Video lessons provide an overview of the topics. You should complete the video lessons prior to attending the face-to-face lecture.
Lecture	Faculty will elaborate on complex content for deeper learning. You will be able to ask questions when in doubt.
Tutorial	Tutor will guide you in analysing and solving problems.

Reading and References

 Hammer and Hammer, 'Water and Wastewater Technology', Pearson Prentice Hall, 7th Ed. 2012.

Course Policies and Student Responsibilities

(1) General

You are expected to complete all assigned pre-class readings and activities, attend all lectures and tutorials punctually and take all quizzes. You are expected to take responsibility to follow up with course notes and course related announcements for lectures and tutorials you have missed. You are expected to participate in all lectures and tutorials discussions and activities.

(2) Absenteeism

CAs make up a significant portion of your course grade. Absence from quizzes without a

valid reason will affect your overall course grade. Valid reasons include falling sick supported by a medical certificate and participation in NTU's approved activities supported by an excuse letter from the relevant bodies. There will be no make-up opportunities for quizzes.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the <u>academic integrity</u> <u>website</u> for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Course Instructors

Instructor	Office Location	Phone	Email	
Asst. Prof. Chong	N1-01c-91	6513 8126	thchong@ntu.edu.sg	
Tzyy Haur				
Assoc. Prof. Zhou	N1-01c-90	6790 6103	zhouyan@ntu.edu.sg	
Yan				
Planned Weekly Schedule				

Week	Торіс	Course LO	Readings/ Activities
Week 1	Topic 1: Water Use	1	e-learning: 1 hour
			Leclure. 2 hours
Week 2	Topic 2: Water Quality and	2	e-learning: 1 hour
	Standard		Lecture: 2 hours
			Tutorial: 1 hour
Week 3	Topic 3: Water Treatment	3	e-learning: 1 hour
	Processes		Lecture: 2 hours
			Tutorial: 1 hour
Week 4	Topic 3: Water Treatment	3	e-learning: 1 hour
	Processes		Lecture: 2 hours
			Tutorial: 1 hour
Week 5	Topic 3: Water Treatment	3	e-learning: 1 hour
	Processes		Lecture: 2 hours
			Tutorial: 1 hour
Week 6	Topic 3: Water Treatment	3	e-learning: 1 hour
	Processes		Lecture: 1 hour
			Tutorial: 1 hour
	Quiz 1		Quiz: 1 hour

Week 7	Topic 4: Wastewater Generation and Characteristics	1, 2	e-learning: 1 hour Lecture: 2 hours Tutorial: 1 hour
Week 8	Topic 5: Wastewater Treatment Processes	4	Lecture: 2 hours Tutorial: 1 hour
Week 9	Topic 6: Biological Treatment process	4	Lecture: 2 hours Tutorial: 1 hour
Week 10	Topic 6: Biological Treatment process	4	Lecture: 2 hours Tutorial: 1 hour
Week 11	Topic 6: Biological Treatment process	4	Lecture: 2 hours Tutorial: 1 hour
Week 12	Topic 7: Solid Waste Management	5	Lecture: 2 hours Tutorial: 1 hour
Week 13	Topic 8: Air quality Quiz 2	5	Lecture: 2 hours Tutorial: 1 hour

Appendix 1: Assessment Criteria for Final Examination, CA1 and CA2

Performance criteria	Performance Level			
	Outstanding: 4	Good: 3	Average: 2	Poor: 1
Calculate the water	Excellent knowledge	Good knowledge of	General	Little understanding
use and wastewater	of water use and	water use and	understanding of	of water use and
generation.	wastewater	wastewater	water use and	wastewater
	generation	generation	wastewater	generation
			generation	
Explain basic water	Excellent ability to	Good ability to	Able to analyse basic	Unable to analyse
quality parameters	analyse basic water	analyse basic water	water quality	basic water quality
and wastewater	quality parameters	quality parameters	parameters and	parameters and
characteristics.	and wastewater	and wastewater	wastewater	wastewater
	characteristics.	characteristics.	characteristics.	characteristics.
Discuss the working	Excellent ability to	Good ability to	Able to explain the	Unable explain the
principle and design	explain the working	explain the working	working principle and	working principle and
of unit processes for	principle and design	principle and design	design of the unit	design of the unit
water treatment.	of the unit processes	of the unit processes	processes for water	processes for water
	for water treatment.	for water treatment.	treatment.	treatment.
Discuss the working	Excellent ability to	Good ability to	Able to explain the	Unable explain the
principle and design	explain the working	explain the working	working principle and	working principle and
of unit processes for	principle and design	principle and design	design of the unit	design of the unit
wastewater	of the unit processes	of the unit processes	processes for	processes for
treatment.	for wastewater	for wastewater	wastewater	wastewater
	treatment.	treatment.	treatment.	treatment.
Classify solid wastes	Excellent	Good understanding	General	Little understanding
and air quality;	understanding of solid	of solid waste	understanding of solid	of solid waste
discuss solid waste	waste management	management and the	waste management	management and the
management and the	and the various	various adverse	and the various	various adverse
impacts of air	adverse effects of air	effects of air	adverse effects of air	effects of air
pollution.	pollution.	pollution.	pollution.	pollution.