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Abstract—Single modality action recognition on RGB or depth sequences has been extensively explored recently. It is generally

accepted that each of these two modalities has different strengths and limitations for the task of action recognition. Therefore, analysis

of the RGB+D videos can help us to better study the complementary properties of these two types of modalities and achieve higher

levels of performance. In this paper, we propose a new deep autoencoder based shared-specific feature factorization network to

separate input multimodal signals into a hierarchy of components. Further, based on the structure of the features, a structured sparsity

learning machine is proposed which utilizes mixed norms to apply regularization within components and group selection between them

for better classification performance. Our experimental results show the effectiveness of our cross-modality feature analysis framework

by achieving state-of-the-art accuracy for action classification on five challenging benchmark datasets.

Index Terms—Multimodal analysis, RGB+D, action recognition, structured sparsity

Ç

1 INTRODUCTION

RECENT development of range sensors had an indisput-
able impact on research and applications of machine

vision. Range sensors provide depth information of the
scene and objects, which helps in solving problems that are
considered hard for RGB inputs [1].

Human activity recognition is one of the active fields in
computer vision and has been explored extensively. Recent
advances in hand-crafted [2], [3] and convnet-based [4] fea-
ture extraction and analysis of RGB action videos achieved
impressive performance. They generally recognize action
classes based on appearance and motion patterns in videos.
The major limitation of RGB sequences is the absence of 3D
structure from the scene. Although some works are done
towards this direction [5], recovering depth from RGB in
general is an underdetermined problem. As a result, depth
sequences provide an exclusive modality of information
about the 3D structure of the scene, which suits the problem
of activity analysis [6], [7], [8], [9], [10], [11], [12]. This

complements the textural and appearance information from
RGB. Our goal in this work is to analyze the multimodal
RGB+D signals for identifying the strengths of respective
modalities through teasing out their shared and modality-
specific components and to utilize them for improving the
classification of human actions.

Having multiple sources of information, one can find a
new space of common components which can be more
robust than any of the input features. Through linear projec-
tions, canonical correlation analysis (CCA) [13], [14] gives us
the correlated form of input modalities which in essence is a
robust representation of multimodal signals. However, the
downside of CCA is the linearity limitation. Kernel canonical
correlation analysis (KCCA) [15] extended this idea into non-
linear kernel-based projections, which is still limited to the
representation capacity of the kernel’s space and is not able
to disentangle the high-level nonlinear complexities between
the input modalities. Further, the traditional solutions of
CCA and KCCA are to solve the maximization of correlation
between the projected vectors analytically, which does not
scale well with the size of the data.

To overcome these limitations, a new deep autoencoder-
based nonlinear common component analysis network is
proposed to discover the shared and informative compo-
nents of input RGB+D signals.

Besides the shared components, each input modality has
specific features which carry discriminative information for
the recognition task. In this respect, we can enhance the
representation by incorporating the modality-specific com-
ponents of respective modalities [16], [17]. Based on this
intuition, at each layer our deep network factorizes the
multimodal input features into their shared and modality-
specific components. By stacking such layers, we further
decode the complex and highly nonlinear representations of
the input modalities in a nonlinear fashion.
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Across the layers, our deep multimodality analysis
extracts a set of structured features which consist of hierar-
chically factorized multimodal components. The common
components are robust against noise and missing informa-
tion between the modalities, and the modality-specific com-
ponents carry the remaining informative features which are
irrelevant to the other modality. To effectively perform rec-
ognition tasks on our structured features, we design a struc-
tured sparsity-based learning framework. With different
mixed norms, features of each component can be grouped
together and group selection can be applied to learn a better
classifier. We also show that the advantage of our learning
framework is more significant as network gets deeper.

The contributions of this work are two-fold: first we
introduce a new deep learning network for hierarchical
shared-specific factorization of RGB+D features. Second, a
structured sparsity learning machine is proposed to explore
the structure of hierarchical factorized representations for
effective action classification.

The rest of this paper is organized as follows. Section 2
explores the related work. Section 3 introduces the pro-
posed deep component factorization network. Section 4
describes our classification framework for factorized com-
ponents. Section 6 provides our experimental results, and
Section 7 concludes the paper.

2 RELATED WORK

There are other works which applied deep networks to mul-
timodal learning. The work in [18], [19] used DBM for
finding a common space representation for two input
modalities, and predict one modality from the other.
Andrew et al. [20] proposed a deep canonical correlation
analysis network with two stacks of deep embedding fol-
lowed by a CCA on top layer. Our method is different from
these works in two major aspects. First, the previous work
performed the multimodal analysis in just one layer of the
deep network, but our proposed method performs the com-
mon component analysis in every single layer. Second, we
incorporate modality-specific components in each layer to
maintain all the informative features, at each layer.

Jia et al. [21] factorized the input features to shared and
private components by applying structured sparsity, for the
task of multi-view learning on human pose estimation, with
linearity assumption. Cai et al. [16] proposed a nonlinear
factorization of the features into common and individual
components, towards a better representation of features for
action recognition. They utilized mixture models to add
nonlinearity to linear probabilistic CCA [22]. Our proposed
technique stacks layers of nonlinear shared component
analysis to progressively disentangle highly nonlinear cor-
relations between the input features.

While learning frameworks in [23], [24], [25], [26] applied
structured sparsity for other similar tasks, our structured
sparsity learning machine extends the sparse selection into
two levels of concurrent component and layer selection,
which is more suited to the hierarchical outputs from our
deep factorization network.

Recent single modality action recognition methods on
depth signals can be divided into two major groups: depth
map analysis methods [6], [11], [27], [28] and skeleton based
methods [8], [9], [10], [29], [30].

The first group extract the action descriptors directly
from depth map sequences. The idea of spatio-temporal
interest points [31] was applied in depth videos by [11].
They also proposed depth cuboid similarity features to rep-
resent local patches. HON4D [6] represents depth sequences
as histograms of 4D oriented normals of local patches, quan-
tized on the vertices of a regular polychoron. Rahmani et al.
[7], [28] achieved higher levels of robustness against view-
point variations by using histograms of oriented principle
components. Lu et al. [27] proposed binary range-sample
descriptors based on t tests on depth patches. The work of
[32] applied convolutional networks for learning action clas-
ses on depth maps. Rahmani and Mian [33], [34] introduced
a nonlinear knowledge transfer model to transform differ-
ent views of human actions to a canonical view.

The second group of methods represent actions based on
the 3D positions of major body joints, which are available for
most of depth based action datasets. Luo et al. [29] proposed
a novel skeleton-based discriminative dictionary learning
method, utilizing group sparsity and geometry constraints.
Vemulapalli et al. [8] represented skeletons as points and
actions as curves in a Lie group using the 3D relative geome-
try between body parts. Evangelidis et al. [30] proposed a
compact and view-invariant representation of body poses
calculated from joint positions. Wang et al. [35] introduced
a mining technique to find part-based mid-level patterns
(frequent local parts) and aggregated the local representa-
tions as bag-of-FLPs to be classified by a SVM. Veeriah et al.
[36] extended the structure of the long short-term memory
(LSTM) units [37] to learn differential patterns in skeleton
locations. The work of [38] introduced a hierarchy of recur-
rent networks to learn part-based motion patterns and com-
bine them for action classification. Zhu et al. [39] proposed a
new regularization term for learning co-occurrences of
motion patterns among different joint groups. The work of
[40] introduced a new part-aware LSTM structure to dis-
cover the long-term motion patterns of skeleton-based body
parts separately and learn the action classes based on these
representations. In [9], motion and local depth based appear-
ance of each body joint was encoded using Fourier transform
over a temporal pyramid. They also proposed a mining
method to find the set of most representative body joints for
each action class. Shahroudy et al. [41] formulated the dis-
criminative joint selection by introducing a hierarchical
mixed norm. The work of [42] combined different spatio-
temporal depth and skeleton based gradient features and
applied a random decision forest for action classification.
Meng et al. [43] proposed a real-time action recognition
method by applying random forest classifier on a set of dis-
tance values between the body joints and interacted objects.
Wang and Wu [10] applied max-margin time warping to
match the descriptors of skeletons over the temporal axis
and learn phantom templates for each action class. An exten-
sive review of different approaches and techniques on 3D
skeletal data is done by [44]. The fusion of various depth
based features is also studied by [45].

Multimodality analysis of RGB+D action videos is stud-
ied by [46], [47], [47], [48], [49], [50], [51], [52], [53], [54], [55],
[56]. Ni et al. [46] introduced a RGB+D fusion method by
concatenating depth descriptors to RGB based representa-
tions of STIP points. Liu and Shao [47] introduced a genetic
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programming framework to improve the RGB and depth
descriptors and their fusion simultaneously through an
iterative evolution. The work of [48] solved the problem of
RGB+D action recognition by utilizing RGB information for
better tracking of interest point trajectories and describe
them by depth-base local surface patches. Hu et al. [49]
proposed a heterogeneous multitask feature learning frame-
work to mine shared and modality-specific RGB+D
features. The work of [50] applied projection matrices to the
common and independent spaces between RGB and depth
modalities. They learned their model by minimizing the
rank of their proposed low-rank bilinear classifier.

The work of [51] also extracted STIPs from RGB and com-
bined their HOG and HOF descriptors from RGB channel
with local depth patterns (LDP) features from depth channel
to fuse the two modalities. Depth-induced multiple channel
STIPs [52], also added depth distances into GMM-based
STIP representations. In [53] the STIP detection is done sepa-
rately on RGB and depth and the HOGHOF descriptors are
fused by combining the BOW representations of LLC codes
of local features. Tsai et al. [54] used depth channel to seg-
ment the human body into known parts. STIPs with descrip-
tors on RGB and depth channels are aggregated for each part
by BOF representation over temporal pyramids. They
assigned higher weights to non-occluded body parts to
achieve a more robust global representations for action rec-
ognition. Multistream fused hidden Markov model was uti-
lized to fuse pixel change history feature from RGB with
MHI feature from depth channel by [55]. The work of [56]
proposed a structured sparsity based fusion for RGB+D local
descriptors. An evolutionary programming RGB+D fusion
method was proposed by [47]. The proposed RGB+D analy-
sis frameworks, are different from these methods, since our
focus is on studying the correlation between the two modali-
ties in the local level features and factorizing them to their
correlated and independent components.

Recent advances of visual recognition in digital images
using deep convolutional networks [57], [58], [59], [60] also
inspired the research in video analysis. Ng et al. [61] studied
two techniques of feeding videos to convnets for video clas-
sification. They proposed temporal pooling of the convnet-
based features of frames to aggregate video descriptors
from frame features. They also studied the advantages of
utilizing a long short-term memory [37] network stacked
over a convnet for video classification. Simonyan and
Zisserman [4] fed a fixed length video sequence and its opti-
cal flow to a two-streamed convnet and fused the scores of
the two streams in the end to classify the action labels.
Wang et al. [62] combined the advantages of hand-crafted
trajectory-based features and deep convnet learning based
methods by applying [4]’s network along the motion trajec-
tories of input videos. A novel deep convoultional frame-
work for video event detection and evidence recounting
was proposed by [63]. They introduced a back pass tech-
nique to localize the key evidences of the interested events
in spatial-temporal domain. Tran et al. [64] studied the fully
three dimensional convnet based video analysis and evalu-
ated their proposed framework on various video analysis
tasks including action recognition.

The applications of recurrent neural networks for 3D
human action recognition were explored very recently.

Du et al. [38] applied a hierarchical RNN to discover common
3D action patterns in a data-driven learning method. They
divided the input 3D human skeletal data to five groups of
joints and fed them into a separated bidirectional RNN. The
output hidden representation of the first layer RNNs were
concatenated to form upper-body and lower-body mid-level
representation and these were fed to the next layer of bidirec-
tional RNNs. The holistic representation for the entire body
was obtained by concatenating the output hidden representa-
tions of these second layer RNNs and it was fed to the last
RNN layer. The output hidden representation of the final
RNNwas fed to the softmax classifier for action classification.
Differential RNN [36] added a new gating mechanism to the
traditional LSTM to extract the derivatives of internal state
(DoS). The derived DoS was fed to the LSTM gates to learn
salient dynamic patterns in 3D skeleton data. Thework of [39]
introduced an internal dropout mechanism applied to LSTM
gates for stronger regularization in the RNN-based 3D action
learning network. To further regularize the learning, a co-
occurrence inducing norm was added to the network’s cost
function which enforced the learning to discover the groups
of co-occurring and discriminative joints for better action rec-
ognition. Liu et al. [65] extended the recurrent network based
sequence analysis towards sequences of body joints. They
added a new dimension dimension to the structure of a
deep LSTM-based framework to learn the features over time
and over the sequences of joints concurrently. To apply
ConvNet-based learning to this domain, [66] used syntheti-
cally generated data and fitted them to real mocap data. Their
learning method was able to recognize actions from novel
poses and viewpoints.

Different from other methods, the proposed framework
analyzes the components between the two modalities in a
deep network, and factorizes the input RGB+D features into
their shared and specific components in a hierarchy of non-
linear layers. Our solution is general and can be applied on
any type of multimodal features to analyze their cross-
modality components.

3 DEEP SHARED-SPECIFIC COMPONENT ANALYSIS

We have two sets of features extracted from different
modalities of data (RGB and depth signals) as our input for
the task of action classification. State-of-the-art RGB based
features [2], [67] include 2D motion patterns and appear-
ance information of objects and scenes. On the other hand,
various depth-based features [6], [7], [9], [11] encode 3D
shape and motion information, without appearance and
texture details. Consequently, it is beneficial to fuse the
complementary RGB and depth-based features for better
performance in action analysis.

There are different techniques for feature fusion. The
choice of fusion strategy should rely on dependency of fea-
tures. When features have very high dependency, descriptor-
level fusion gives the best outcome, and when multiple
groups of features have very low interdependency, kernel-
level fusion performs better [17]. Since RGB and depth based
features encode an entangled combination of common and
modality-specific information of the observed action, they are
neither independent nor fully correlated. Therefore, it is rea-
sonable to embed the input data into a space of factorized
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common and modality-specific components. The combina-
tion of the shared and specific components in input features
can be very complex and highly nonlinear. To disentangle
them,we stack layers of nonlinear autoencoder-based compo-
nent factorization to form a deep shared-specific analysis
network.

In this section, we first introduce our basic framework of
shared-specific analysis for multimodal signal factorization,
then describe the deep network of stacked layers, where
each layer performs factorization analysis and collectively
produce a hierarchical set of shared and modality-specific
components.

3.1 Single Layer Shared-Specific Analysis

Let us notate input RGB features by Xr and depth features
by Xd. We propose to factorize each input feature pattern
into two spaces: first, common component space which cor-
responds to the highest correlation with the other modality
ðYr;YdÞ, and second, its modality-specific feature compo-
nent space ðZr;ZdÞ

Yr

Yd

Zr

Zd

2
664

3
775 ¼ gðXr;Xd;VÞ; (1)

where V is the set of model parameters that will be learned
from the training data. We propose a sparse autoencoder-
based network as the gð�Þ function, as illustrated in Fig. 1.

Feature vectors of each modality are factorized into Y
and Z which represent shared and individual components
of each modality respectively. Each component is derived
from a linear projection of the input features followed by a
nonlinear activation. Mathematically

Yr ¼ fðWrXr þ bYr1
nÞ (2)

Zr ¼ fðVrXr þ bZr1
nÞ; (3)

in which fð�Þ is a nonlinear activation function. We use sig-
moid scaling in our implementation. bYr and bZr are bias
terms. Similarly, for the depth based input, we have

Yd ¼ fðWdXd þ bYd1
nÞ (4)

Zd ¼ fðVdXd þ bZd
1nÞ: (5)

To prevent output degeneration, we expect the original
features to be reconstructible from their factorized compo-
nents [68]

eXr ¼ fð QrUr½ � Yr

Zr

� �
þ beXr

1nÞ

¼ fðQrYr þUrZr þ beXr
1nÞ

(6)

eXd ¼ fð QdUd½ � Yd

Zd

� �
þ beXd

1nÞ

¼ fðQdYd þUdZd þ beXd
1nÞ:

(7)

Now we can formulate the desired component factoriza-
tion into an optimization problem with the cost function

V� ¼ argmin
V

DðYr;YdÞ þ � Vk k2
þ zrDðXr; eXrÞ þ zdDðXd; eXdÞ
þ arCðYr; rY Þ þ adCðYd; rY Þ
þ brCðZr; rZÞ þ bdCðZd; rZÞ;

(8)

where V ¼ fW:;V:;Q:;b:g is the set of all parameters, and
�; z:;a:;b:½ � are hyper-parameters of trade-off between terms.
The first term in (8) forces the shared components of the

two modalities (Yr and Yd) to be as close as possible. We for-
mulate this term as the Frobenius norm of the difference
between two matrices

DðYr;YdÞ ¼ Yr � Ydk kF : (9)

The second term is the general weight regularization
term, applied on the projection weights to prevent networks
from overfitting training data.

The reconstruction costs are represented as DðXr; eXrÞ and
DðXd; eXdÞ to prevent the model from degeneration. Here, we
use Frobenius norm (the same as (9)) of the reconstruction
error for the reconstruction cost term.

Last four terms of (8) are sparsity penalty terms over Y
and Z outputs. It has been shown in [69], [70] that applying
sparsity on the features of Y and Z will help to improve the
learning capability, especially when components are over-
complete. As our sparsity penalty, we use KL-divergence
term, applied between Y components and the sparsity
parameters rY , as well as Z and rZ .

It is worth pointing out, since the proposed framework is
built on a sparse autoencoder-like scheme and has sigmoid
scaling nonlinearity, it is necessary to apply PCA whitening
on the input matrices Xr and Xd and scale their elements
into the range of 0; 1½ �.

In this formulation, the disparity between Zd and Zr com-
ponents is applied implicitly. The similarity inducing norm
pushes the common components of the two modalities to
move inside Y components. Therefore, we expect the
remaining features in each of Z components to be highly dif-
ferent across the modalities.

3.2 Deep Shared-Specific Component Analysis

State-of-the-art RGB and depth based features for action rec-
ognition, are extracted by multiple linear and nonlinear
layers of projection, embedding, spatial and temporal pool-
ing, or statistical distribution encodings, e.g., BOvW [71]
and FV [72] or Fourier temporal pyramids in [9]. Hence the
common components between modalities can lie on highly
complex and nonlinear subspaces of input data, and one

Fig. 1. Illustration of the proposed single layer shared-specific compo-
nent analysis. Xr and Xd are input RGB and depth based features. We
factorize each input feature into shared ðYÞ and specific ðZÞ components
by forcing the Y vectors to be close, and the input features to be recon-
structible from derived components.
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layer of the proposed shared-specific analysis cannot
decode these complexities between the components.

By cascading multiple shared-specific analysis layers, we
build a deep network to further factorize input features
based on their higher orders of common and private infor-
mation between modalities. To do so, we feed Y compo-
nents of the previous layer as multimodal inputs of the
current layer and apply the same method with new learning
parameters in order to further factorize the features. As
illustrated in Fig. 2, each layer extracts modality-specific
components of the modalities and passes the shared ones
for further factorization in the next layer

YðiÞ
r

Y
ðiÞ
d

ZðiÞ
r

Z
ðiÞ
d

2
666664

3
777775 ¼ gðXr;Xd;V

ðiÞÞ if i ¼ 1

gðYði�1Þ
r ;Y

ði�1Þ
d ;VðiÞÞ if i > 1:

(
(10)

By applying this hierarchy on nonlinear layers, we expect
the network to factorize more complex and higher order com-
ponents of the inputs as it moves forward through the layers.
Our deep network is trained greedily and layer-wise [73],
[74], [75]. In other words, the optimization of each layer is
started upon the convergence of the previous layer’s training.

Upon training of the deep network, each input sample
will be factorized into a pair of specific components
ðZðiÞ

r ;Z
ðiÞ
d Þ for each layer i 2 1; ::; l½ �, plus the concatenation of

last layer’s shared components ðYðlÞ
r ;Y

ðlÞ
d Þ.

3.3 Convolutional Shared-Specific Component
Analysis

The input features (Xr;Xd) of the proposed deep shared-
specific component analysis network are assumed to des-
cribe different representations of a multimodal entity. In our
application, this entity is a RGB+D human action video and
the inputs are RGB-based and depth-based features of it.

Since every input video can be regarded as a three
dimensional cube (in x; y; t), it can be split to sub-cubes
along all of its three dimensions, and the proposed multi-
modal analysis can be done on each of these sub-cubes sepa-
rately. By limiting our analysis into holistic RGB+D features,
we may lose discriminative local information in both
modalities, because local features also have dependencies
across modalities and their deep shared-specific component
analysis (DSSCA) is beneficial. Therefore, as depicted in
Fig. 3, we first train the local DSSCA network (DSSCAL) on
RGB+D features of the sub-cubes of training video samples.

One can think of this stage as applying the same DSSCAL

network on all the sub-cubes of every input RGB+D video.
At each step, we have a fixed-sized window over the current
sub-cube in both RGB and depth channels of the input video
and feed their corresponding sub-video representations to
the DSSCAL network as a single training sample. By
convolving this window over all of the possible sub-cubes of
every input video sample, we train theDSSCAL network.

The learned DSSCAL is then utilized to decompose the
multimodal features of all the convolved sub-cubes. For every
input video sample, we concatenate all of the factorized com-
ponents of its sub-cubes. The resulting representation is then
put together with the holistic multimodal features of video
sample, to build the input for the holistic DSSCA network
(DSSCAH), similar to [76]. The inputs of DSSCAH are PCA
whitened and scaled into the range of 0; 1½ �.

Overall, we have L ¼ l1 þ l2 layers of factorization where
l1 and l2 are the number of layers in DSSCAL and DSSCAH

networks respectively. By applying the trained local-holistic
networks into the features of each video sample, we have a
set of 2Lþ 1 independent components

A ¼ fðZ1
rÞ

T
; ðZ1

dÞ
T
; . . . ; ðZL

r Þ
T
; ðZL

d Þ
T
; ðYLÞTgT ; (11)

where YL ¼ YL
r

YL
d

� �
is the concatenation of last layer’s com-

mon components.

3.4 Optimization Algorithm

The proposed formulation of cost function (8) is not a con-
vex function of training parameters. Therefore, optimization
of the learning parameters is not feasible in a single step. We
iteratively optimize subsets of the parameters while keeping
others fixed to achieve a suboptimal solution which is
already shown effective in different applications [77].

Specifically, the learning parameters of each layer can be
divided into two subsets. First are the ones defined for pro-
jection and reconstruction of the shared components Y:, and
second consists of similar parameters for individual compo-
nent Z:. These two sets are

VY ¼ fWr;Wd;Qr;Qd;bYr ;bYd ;beXr
;beXd

g (12)

Fig. 2. Cascading factorization layers to a deep shared-specific network.
To disentangle the highly nonlinear combination of shared-specific com-
ponents, factorization layers are stacked by feeding the Y components
of each layer as inputs of the next layer. Fig. 3. Schema of our convolutional and holistic networks of deep shared-

specific component analysis (DSSCA). We divide each video into n local
cubes. Local features Xi

r and Xi
d are extracted from the ith cube. Convolu-

tional network (denoted as DSSCAL) is trained and then applied to
decompose local features. The factorized components are then com-
bined with holistic features XH

r and XH
d . This combination undergoes PCA

and is fed into the holistic network (denoted as DSSCAH ) as its multi-
modal input.
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VZ ¼ fVr;Vd;Ur;Ud;bZr ;bZd
;beXr

;beXd
g: (13)

Now, to optimize the overall cost, we first fix VZ (except beX:
)

and minimize the cost function (8) regarding VY . Then fix

parameters of VY (except beX:
) and optimize regarding VZ

and repeat this iteratively to converge into a suboptimal point.
In our implementation, all the optimization steps are

done by “L-BFGS” algorithm using off-the-shelf “minFunc”
software [78].

4 STRUCTURED SPARSITY LEARNING MACHINE

Previous shared-specific analysis steps were all unsuper-
vised and applied just based on the mutual characteristics
of the two modalities. As a result, the factorized features of
each component are not guaranteed to be equally discrimi-
native for the following classification step. Hence we adopt
the structured sparsity regularization method of [24], [26]
aiming to select a number of components/layers sparsely to
achieve more robust classification. Since the features of each
component are highly correlated, our structured sparsity
regularizer bounds the weights of the features inside each
component to become activated or deactivated together.

Mathematically, we want to learn a linear projection
matrix B to project our hierarchically factorized features A
(see Equation (11)), to a class assignmentmatrix F defined as

fj
i ¼ 1 if jth sample belongs to the ithclass

0 otherwise

�
(14)

so that ATBwould be as close as possible to F.
Each column of A consists of 2Lþ 1 components of fea-

tures for each training sample. We use the notation AG to
denote the rows of A which include the features of compo-
nent G. Variable G can take values between 1 and 2Lþ 1 or
their corresponding component labels. Correspondingly,
columns of B have the same structure, and we denote the
Gth component’s parameters as BG. We refer to the ith col-
umn of B as bi which is the projection to our binary classifier
for the ith action. Finally bG

i refers to the ith column ofBG.
Our classifier is formulated as another optimization

problem with the cost function below

B� ¼ argmin
B

ATB� F
�� ��2

F
þgE Bk kGE

þ gL Bk kGL
þgW Bk kF :

(15)

Component-wise regularizer norm, kBkGE
, groups the

weights of each component by applying a ‘2 norm. Then
applies the component selection by a ‘1 norm over the ‘2
values of all components. Mathematically

Bk kGE
¼

Xc

i¼1

X2Lþ1

G¼1

bG
i

�� ��
2

¼
Xc

i¼1

XL
j¼1

b
Z
j
r

i

����
����
2

þ b
Z
j
d

i

����
����
2

� �

þ
Xc

i¼1

bY L

i

��� ���
2
;

(16)

where c is the number of class labels.

This mixed norm dictates the component-wise weight
learning regarding their discriminative strength for each
action class. Since it applies ‘2 norm inside the components
and ‘1 norm between them, it regularizes the weights within
each component, while sparsely selects discriminative com-
ponents for different classes.

On the other hand, a layer-wise group selection can
also be beneficial, because discriminative features may
become factorized in some layers of our hierarchical deep
network. Based on this intuition, we apply another group
sparsity mixed norm to enforce layer selection. Similar to
GE norm, our layer selection norm (GL) groups the learn-
ing parameters corresponding to the components of each
layer of the network, and applies ‘1 sparsity between
them

Bk kGL
¼

Xc

i¼1

XL
j¼1

b
Z
j
r

i

b
Z
j
d

i

2
4

3
5

������
������
2

þ
Xc

i¼1

bY L

i

��� ���
2
: (17)

The last norm in (15) is a general weight decay regular-
izer to prevent the entire classifier from overfitting.

Similar to previous section, this optimization is also done
using “L-BFGS” algorithm. Upon training the classifier and
finding the optimal B�, we classify each testing sample with
exemplar features aq as

hðaqÞ ¼ argmax
c

haq;b�
ci: (18)

5 CCA-RICA FACTORIZATION AS A BASELINE

METHOD

As a baseline to the proposed method to perform the
shared-specific analysis of the RGB+D inputs, we combined
canonical correlation analysis [13], [14] and reconstruction
independent component analysis (RICA) [68], to extract cor-
related and independent components of input features. In
this section we describe this baseline method.

We use the notation Xr to represent input local RGB
features, and Xd for corresponding local depth features.
We define the linear projections of the two input features
as

Yr ¼ Wr;cXr; Yd ¼ Wd;cXd; (19)

and to make them maximally correlated we maximize

maximize
w
j
r;c;w

j
d;c

CorrðYj
r;Y

j
dÞ

¼ Corrðwj
r;cXr;w

j
d;cXdÞ;

(20)

in which superscript j refers to the jth row of the corre-
sponding matrices.

Canonical correlation analysis [13], [14] solves this ana-
lytically as an eigenproblem, in which each eigenvector
gives one row of the projection and altogether provides the
full projection matrices which lead to the maximum correla-
tion between them.

Based on our intuition about insufficiency of shared com-
ponents for recognition tasks, in the second step, we fix cor-
relation projections (Wr;c;Wd;c) and apply a reconstruction
independent component analysis formulation [68], to
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extract modality-specific components for RGB and depth
separately

Zr ¼ Wr;iXr; Zd ¼ Wd;iXd: (21)

For RGB features we optimize

mininize
wr;i

�

m
eXr � Xr

��� ���2
F
þ
X
j

Wj
r;iXr

��� ���
1

where eXr ¼ WT
r;c;W

T
r;i

h i Wr;c

Wr;i

� �
Xr:

(22)

Similarly for depth features we optimize

mininize
wd;i

�

m
eXd � Xd

��� ���2
F
þ
X
j

Wj
d;iXd

��� ���
1

where eXd ¼ WT
d;c;W

T
d;i

h i Wd;c

Wd;i

� �
Xd:

(23)

Upon convergence of (22) and (23), the RGB+D features
of each trajectory (k) can be represented as a quadruple:
fZrðkÞ;YrðkÞ;YdðkÞ;ZdðkÞg.

6 EXPERIMENTS

This section presents our experimental setup and the results
of the proposed methods on three RGB+D action recogni-
tion datasets.

6.1 Experimental Setup

The proposed methods are evaluated on five RGB+D action
recognition datasets. All these datasets are collected using the
Microsoft Kinect sensor in an indoor environment [79]. This
sensor captures RGB videos and depth map sequences, and
locates the 3Dpositions of 20 body joints of actors in the scene.

In our experiments, we try to use features which encode
information regarding all the available modalities. From RGB
videos, we extract dense trajectories [2] and use HOG, HOF,
MBHX, and MBHY features as trajectory descriptors. To
encode the global representation of samples based on their
trajectories, we use VQ with 2K codewords, for each descrip-
tor. The final representation of each sample video, is the
concatenated max-pooled codes of the four descriptors, over
3 levels of the temporal pyramid. For depth sequences, we
use the histograms of oriented 4D normals (HON4D) features
[6]. To explore different setups on each dataset, we extract
this feature in different settings.We describe the details in fol-
lowing sections.

Since the RGB and depth sequences are not fully aligned
and not synced in most of the datasets (all the evaluated
ones in this paper, except RGBD-HuDaAct), convolutional
cubes have to be large enough so that they mostly cover the
same parts of the video between the two modalities. To
apply the convolutional network, we consider four tempo-
ral quarters of the videos. In this way, each input sample
has four temporal segments in our convolutional network
and the factorized components of all these segments,
together with holistic features of the entire sample are con-
sidered as the inputs of the stacked network.

To cover various aspects of RGB+D motion and appear-
ances of input samples, we used a combination of different

features. For depth channel, we extract Fourier coefficients
of the joint locations and local occupancy pattern (LOP) fea-
tures [80], histogram of oriented 4D normals (HON4D) [6],
dynamic skeletons (DS), and dynamic depth patterns (DDP)
[49]. From RGB videos, we extract dynamic color patterns
(DCP) [49] and dense trajectory features [2].

For depth-based input, we use Fourier coefficients of the
joint locations and local occupancy pattern features [80].
The size of X:, Y:, and Z: vectors is fixed as 100 for local fea-
tures and 200 for holistic and stacked networks in our
experiments. On each of the experiments, the optimal val-
ues of gammas in SSLM are found via leave-one-sample-out
cross-validation over training samples.

To show the effectiveness of our method, we compare it
with two baseline methods below:

Baseline Method 1. Descriptor level fusion. In this method,
we concatenate all the input RGB and depth-based features
and train a linear SVM for classification.

Baseline Method 2. Kernel level combination. For this base-
line method, we calculate the RBF kernel matrices based on
all the input RGB and depth-based features and combine
them linearly to classify in the form of multi-kernel SVM.
We find the weights of kernels via a brute force search in a
cross validation setting using training samples [81].

In the following tables, we report the results of our
method in two settings:

DSSCA Kernel is the kernel combination of the hierar-
chically factorized components of our shared-specific analy-
sis network.

DSSCA SSLM. Refers to the proposed structured sparsity
learning machine based on the hierarchically factorized
components described in Section 4.

It is worthmentioning, there are more than 40 datasets spe-
cifically for 3Dhuman action recognition. The survey of Zhang
et al. [82] provided a great coverage over the current datasets
and discussed their characteristics in different aspects, as well
as the best performingmethods for each dataset.

6.2 Online RGBD Action Dataset

Online RGBD action dataset [12] is a RGB+D benchmark for
action recognition. Unlike most of the other RGB+D bench-
marks, this dataset is collected in different locations and
provides a cross-environment evaluation setting. It includes
samples of seven daily action classes: drinking, eating, using
laptop, reading cellphone, making phone call, reading book, and
using remote. For the recognition task, it provides videos of
24 actors. Each actor performs each of the actions twice.
Overall, this dataset include 336 RGB+D video samples.
Three different recognition scenarios are defined on this
dataset. The first and second scenarios are cross-subject
tests. In the first scenario, the first 8 actors are assigned for
training and the second eight actors are for testing. The sam-
ples of the second scenario are the same as the first one but
training and testing samples are swapped. The third sce-
nario is a cross-environment setting. The videos of the third
eight actors are collected in another location and are consid-
ered as test data. The other 16 actors’ videos are used for
training. The first and second scenarios are cross-subject
and the third is a cross-environment evaluation.

Table 1 compares the results of the deep shared-specific
component analysis (DSSCA) and structure sparsity
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learning machine (SSLM), with baseline methods on this
dataset. The results of this experiment show our DSSCA
network successfully decompose input features into a more
powerful representation which leads into a clear improve-
ment on the classification performance. They also show our
SSLM can select the discriminative components and layers
and learns a better classifier.

We also compare different structures of our DSSCA net-
work. For each scenario, we report the performance of three
structures. “Holistic” refers to the three-layer deep network
applied on holistic features. “Local” is the two-layer convo-
lutional network applied on local features. “Stacked local
+holistic” is the stacked local and holistic networks, as illus-
trated in Fig. 3. The results are reported in Table 2. We con-
clude that the local and holistic features are complementary
and applying stacked local+holistic network can improve
the final classification accuracy.

In our third experiment on this dataset, performance of
the proposed networks is compared with a similar network
without modality-specific components. The reference net-
work acts similarly to traditional CCA methods. We com-
pare these two networks on the “local” network of third
scenario. The result is shown in Table 3. We can see includ-
ing independent components is beneficial and improves the
accuracy. Performance of the network with these compo-
nents is clearly higher. The second observation is our
method improves the performance more significantly by

having multiple layers. Without having the modality-
specific components, the values of common components
can not change much, on higher layers. This shows our pro-
posed structure is suitable for cascading more layers and
decomposing the features layer by layer.

Table 4 compares our results with the state-of-the-art
method on this dataset. Due to the recency of this dataset,
only two other works reported results on this dataset. As
shown, our method outperforms their results with a large
margin, which demonstrates the importance of RGB+D
fusion for action recognition as well as the effectiveness of
our proposed method for this task.

6.3 MSR-DailyActivity3D Dataset

MSR-DailyActivity dataset [80] is among the most chal-
lenging RGB+D benchmarks for action recognition, which
has a high level of intra-class variation and a large num-
ber of action classes. It provides 320 RGB+D samples,
from 16 classes of daily activities: drink, eat, read book, call
cellphone, write on a paper, use laptop, use vacuum cleaner,
cheer up, sit still, toss paper, play game, lie down on sofa,
walk, play guitar, stand up, and sit down. Each action is
done by 10 actors, twice by each actor. The standard eval-
uation on this dataset is defined on a cross-subject setting:
first five subjects are used for training and others for test-
ing. Results of the experiments on this benchmark are
reported in Tables 5 and 6.

Table 7 also shows the accuracy comparison between the
proposed method and the state-of-the-art results reported
on this benchmark, in which we reduced the error rate by
more than 40 percent compared to the best reported results
so far. This shows our RGB+D analysis method can effec-
tively improve the performance of the action recognition
system.

TABLE 1
Comparison of the Results of Our Methods

with the Baselines in Online RGBDAction Dataset

Eval.
Dataset

Baseline
Method 1

Baseline
Method 2

DSSCA
Kernel

DSSCA
SSLM

Online S1 86.6% 91.1% 92.9% 95.5%
Online S2 85.6% 91.0% 91.9% 93.7%
Online S3 73.0% 80.2% 82.0% 83.8%

S1, S2, and S3 refers to the three different scenarios of the Online RGBD
Action dataset. First column shows the performance of descriptor concatena-
tion on all RGB+D input features. Second column reports the accuracy of the
kernel combination on the same set of features. Third column shows the result
of our correlation-independence analysis. It employs a kernel combination for
classification. Last column reports the accuracy of proposed structured sparsity
learning machine.

TABLE 2
Performance Comparison for Holistic Network,

Local Network, and Stacked Local+Holistic (Fig. 3)
Networks on Online RGBDAction Datasets

Evaluation
Dataset

Network
Structure

DSSCA
Kernel

DSSCA
SSLM

Online RGB+D Action S1 Holistic 90.2% 92.0%
Online RGB+D Action S1 Local 92.9% 93.8%
Online RGB+D Action S1 Stacked Local+Holistic 92.9% 95.5%

Online RGB+D Action S2 Holistic 87.4% 91.0%
Online RGB+D Action S2 Local 88.3% 89.2%
Online RGB+D Action S2 Stacked Local+Holistic 91.9% 93.7%

Online RGB+D Action S3 Holistic 79.3% 82.0%
Online RGB+D Action S3 Local 75.7% 77.5%
Online RGB+D Action S3 Stacked Local+Holistic 82.0% 83.8%

Reported are the results of our method using kernel combination and SSLM.

TABLE 3
Comparison with a Correlation Network
(without Modality-Specific Components)
on the Online RGBDAction Dataset,

Local Network, Scenario 3

Network
Description

Layer 1
SSLM

2 Layers
SSLM

Local Without Z 73.0% 73.9%
Local With Z 76.6% 77.5%

Without Z components, the network is limited to
the shared ones and acts similar to CCA.

TABLE 4
Performance Comparison of Proposed DSSCA with the
State-of-the-Art Results on Online RGBDAction Dataset

Methods Setup Accuracy

HOSM [83] Same environment 49.5%
Orderlet [12] Same environment 71.4%
Meng et al. [43] Same environment 75.8%
Proposed DSSCA-SSLM Same environment 94.6%

HOSM [83] Cross environment 50.9%
Orderlet [12] Cross environment 66.1%
Proposed DSSCA-SSLM Cross environment 83.8%

Same environment setup is the average of S1 and S2 scenarios, and cross envi-
ronment setup is the same as S3 scenario.
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6.4 3D Action Pairs Dataset

3D Action Pairs dataset [6] is a less challenging RGB+D
dataset for action recognition. This dataset provides six
pairs of action classes: pick up a box/put down a box, lift a box/
place a box, push a chair/pull a chair, wear a hat/take off a hat, put
on a backpack/take off a backpack, and stick a poster/remove a
poster. Each pair of the classes have almost the same set of
body motions but in different temporal order. Each action
class is captured from 10 subjects, each one 3 times. Overall,
this dataset includes 360 RGB+D video samples. The first
five subjects are kept for testing and others are for training.

Tables 8, 9, and 10 compare the accuracies between the
proposed framework, baselines and the state-of-the-art
methods reported on this benchmark. Our method ties with
two recent works (MMMP [41], and BHIM [50]) in saturat-
ing the benchmark by achieving the flawless 100 percent
accuracy on this dataset.

6.5 NTU RGB+D Dataset

NTU RGB+D [40] is one of the largest scale benchmark data-
set for 3D action recognition. It provided 56,880 RGB+D
video samples of 60 distinct actions. The 60 action classes in
NTU RGB+D dataset are: drinking, eating, brushing teeth,
brushing hair, dropping, picking up, throwing, sitting down,
standing up (from sitting position), clapping, reading, writing,
tearing up paper, wearing jacket, taking off jacket, wearing a shoe,
taking off a shoe, wearing on glasses, taking off glasses, puting on
a hat/cap, taking off a hat/cap, cheering up, hand waving, kicking
something, reaching into self pocket, hopping, jumping up, mak-
ing/answering a phone call, playing with phone, typing, pointing
to something, taking selfie, checking time (on watch), rubbing two
hands together, bowing, shaking head, wiping face, saluting, put-
ting palms together, crossing hands in front. sneezing/coughing,
staggering, falling down, touching head (headache), touching
chest (stomachache/heart pain), touching back (back-pain), touch-
ing neck (neck-ache), vomiting, fanning self. punching/slapping
other person, kicking other person, pushing other person, patting
other’s back, pointing to the other person, hugging, giving
something to other person, touching other person’s pocket, hand-
shaking, walking towards each other, and walking apart from
each other.

TABLE 5
Comparison of the Results of Our Methods with
the Baselines in MSR-DailyActivity3D Dataset

Eval.
Dataset

Baseline
Method 1

Baseline
Method 2

DSSCA
Kernel

DSSCA
SSLM

Daily 91.9% 94.4% 96.3% 97.5%

TABLE 6
Performance Comparison for Holistic Network,

Local Network, and Stacked Local+Holistic (Fig. 3)
Networks on MSR-DailyActivity3D Dataset

Evaluation
Dataset

Network
Structure

DSSCA
Kernel

DSSCA
SSLM

MSR Daily Activity 3D Holistic 95.0% 96.3%
MSR Daily Activity 3D Local 95.0% 96.9%
MSR Daily Activity 3D Stacked Local+Holistic 96.3% 97.5%

Reported are the results of our method using kernel combination and SSLM.

TABLE 9
Performance Comparison for Holistic Network, Local Network,

and Stacked Local+Holistic (Fig. 3) Networks
on 3D Action Pairs Dataset

Evaluation
Dataset

Network
Structure

DSSCA
Kernel

DSSCA
SSLM

3D Action Pairs Holistic 98.9% 99.4%
3D Action Pairs Local 99.4% 98.9%
3D Action Pairs Stacked Local+Holistic 100.0% 100.0%

Reported are the results of our method using kernel combination and SSLM.

TABLE 8
Comparison of the Results of Our Methods
with the Baselines in 3D Action Pairs Dataset

Eval.
Dataset

Baseline
Method 1

Baseline
Method 2

DSSCA
Kernel

DSSCA
SSLM

Pairs 97.7% 98.3% 100.0% 100.0%

TABLE 7
Performance Comparison of the Proposed
Multimodal DSSCA with the State-of-the-

Art Methods on MSR-DailyActivity
Dataset

Method Accuracy

HoDG-RDF [42] 74.5%
Bag-of-FLPs [35] 78.8%
HON4D [6] 80.0%
SSFF [56] 81.9%
ToSP [48] 84.4%
RGGP [47] 85.6%
Actionlet [9] 85.8%
SVN [84] 86.3%
BHIM [50] 86.9%
DCSF+Joint [11] 88.2%
MMTW [10] 88.8%
HOPC [28] 88.8%
Depth Fusion [45] 88.8%
MMMP [41] 91.3%
DL-GSGC [29] 95.0%
JOULE-SVM [49] 95.0%
Range-Sample [27] 95.6%

Proposed DSSCA-SSLM 97.5%

TABLE 10
Performance Comparison of Proposed
Multimodal Correlation-Independence

Analysis with the State-of-the-Art
Methods on 3D Action Pairs Dataset

Method Accuracy

DHOG [85] 66.11%
Bag-of-FLPs [35] 75.56%
Actionlet [9] 82.22%
HON4D [6] 96.67%
MMTW [10] 97.22%
HOG3D-LLC [86] 98.33%
HOPC [28] 98.33%
SVN [84] 98.89%
MMMP [41] 100.0%
BHIM [50] 100.0%

Proposed DSSCA-SSLM 100.0%
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Unlike other evaluated datasets, NTU RGB+D is col-
lected by Microsoft Kinect v.2. Therefore, its skeletal data
includes more body joints and is more accurate. For our
experiments in this section, we limit the depth-based fea-
tures to Fourier temporal pyramids over skeletons, HON4D
and LOP. For RGB-based inputs we use the same set of fea-
tures used for the other datasets.

This dataset suggested two evaluation criteria, cross-
subject and cross-view. For the cross-view evaluation, our set
of RGB based features perform very poorly and could not con-
tribute powerful enough in the proposed multimodal analy-
sis. Therefore, we evaluate the proposed DSSCA-SSLM
framework only on the cross-subject criterion of this dataset.

Due to the large size of training video samples in this
dataset, evaluation of the kernel-based methods (both base-
line method 2 and DSSCA-kernel) were not tractable and
we only reported the results for baseline method 1 and
DSSCA-SSLM frameworks, as provided in Tables 11 and 12.
Table 13 compares the performance of the proposed frame-
work in comparison with other state-of-the-art on this
benchmark.

6.6 RGBD-HuDaAct Dataset

RGBD-HuDaAct [46] is a large size benchmarks for human
daily action recognition in RGB+D. This dataset includes
1189 RGB+D video sequences from 13 action classes: exit the
room, make a phone call, get up from bed, go to bed, sit down, mop
floor, stand up, eat meal, put on jacket, drink water, enter room,
take off jacket, and background activity. The standard evalua-
tion on this dataset is defined on a leave-one-subject-out
cross-validation setting. In our experiments we follow the
evaluation setup described in [46].

6.6.1 Atomic Local Level Feature Analysis

Unlike most of the other datasets, this benchmark provides
fully synchronized and aligned set of RGB and depth vid-
eos. This important characteristic enables us to apply the
atomic level of analysis on local RGB and depth features
within the video samples.

As our atomic local level features, we extract the tracked
dense trajectories [2] in RGB sequences and their HOG,
HOF, MBHX, and MBHY descriptors from both modalities.

To evaluate the effectiveness of the proposed RGB+D
analysis, we apply a single layer SSCA to decompose RGB
and depth descriptors of the trajectories to their correlated
and independent components. For training stage, we sam-
ple a set of 40K trajectories from training set. The output of
the analysis, which are four factorized components for each
trajectory are clustered separately by K-Means with code-
book size 1 K. LLC coding [89] and BOF framework are
applied on the codes of all the trajectories from each RGB
+D video sample to extract their global representations.

In the final step, a linear SVM is used as the action classi-
fier trained on the extracted global representations of the
action video samples.

We evaluated the performance of canonical correlation
analysis method also. As a better baseline, we also evalu-
ated added independent components. In our implementa-
tion of the CCA-RICA method (Section 5) we used the
provided codes by the authors of [90] for CCA and [68] for
RICA.

All the optimizations in our experiments, are done using
“L-BFGS” algorithm. We use the off-the-shelf “minFunc”
software released by [78].

Table 16 shows the results of all the experiments described
in this section and compares them with other state-of-the-art
methods.

At first, we evaluated the performance of correlated com-
ponents of CCA without any modality specific features,
which achieves 93.9 percent outperforming all the reported
results on this benchmark. Compared to the accuracy of
RGB+D linear coding [53], which has the most similar pipe-
line of action recognition to ours, CCA components shows
about two percents improvement. This approves the robust-
ness of shared components and their advantage over using
a simple combination of features from the two modalities.

In the next step, we apply RICA to extract modality-
specific components for RGB and depth local features.
Adding specific components improves the accuracy of the
classification by 2.5 more percents. This supports our argu-
ment about the importance of modality-specific components
and their discriminative strengths for action classification.
The confusion matrix for this method is illustrated in Fig. 4.
The majority of the misclassification are caused by the

TABLE 11
Comparison of the Result of Our Method
with the Baseline for the Cross-Subject
Evaluation Criteria of NTU RGB+D

Dataset

Eval.
Dataset

Baseline
Method 1

DSSCA
SSLM

NTU RGB+D 59.7% 74.9%

TABLE 12
Performance Comparison for Holistic Network, Local Network,

and Stacked Local+Holistic (Fig. 3) Networks on the
Cross-Subject Evaluation Criteria of NTU RGB+D Dataset

Evaluation
Dataset

Network
Structure

DSSCA
SSLM

NTU RGB+D Holistic 70.4%
NTU RGB+D Local 66.4%
NTU RGB+D Stacked Local+Holistic 74.9%

Reported are the results of our method using SSLM.

TABLE 13
Performance Comparison of Proposed Multimodal Correlation-
Independence Analysis with the State-of-the-Art Methods on the

Cross-Subject Evaluation Criteria of NTU RGB+D Dataset

Method Cross-Subject Accuracy

HOG2 [87] 32.24%
Super Normal Vector [84] 31.82%
HON4D [6] 30.56%
Lie Group [8] 50.08%
Skeletal Quads [30] 38.62%
FTP Dynamic Skeletons [49] 60.23%
HBRNN-L [38] 59.07%
P-LSTM [40] 62.93%
ST-LSTM [65] 69.20%
Proposed DSSCA - SSLM 74.86%
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background activity class. This class contains samples of
random motion and other simple activities which are not
covered by other 12 classes, like walking around or stay
seated without much of motion. Therefore it is inevitable to
have some confusion between this class with classes which
contain very small amount of clear motion e.g., making a
phone call. Similar action classes with reverse temporal
order are also mixed up, e.g., sit down and stand up, or put
on jacket and take off jacket classes have the same appear-
ance within individual frames, and their only differences
are the arrangement of frames over time.

Next, we evaluate the proposed SSCA method on this
atomic local level. SSCA outperforms all other techniques
by performing 97.9 percent of correct classification and
achieves the state-of-the-art accuracy on this dataset. Com-
pared to CCA-RICA method, SSCA improves the error rate
by more than 40 percent which is a notable improvement.
The confusion matrix of this experiment is also reported in
Fig. 5. Compared to the mixed-up cases of the CCA-RICA
method (Fig. 4), the confusion patterns are similar but fur-
thered improved.

6.6.2 Global Level Feature Analysis

Similar to other datasets reported in the paper, we perform
the proposed RGB+D analysis on the global representa-
tions extracted from input samples. For RGB signals, the
features are HOG, HOF, MBHX, and MBHY descriptors of
dense trajectories [2], followed by a K-means clustering
and locality-constrained linear coding (LLC) [89] to calcu-
late their global representations as bags-of-features. For
depth, we extract HON4D features [6] for holistic and local
depth based features. The results of this experiment are
reported in Tables 14 and 15 in a similar evaluation setup
to other datasets.

As can be seen in Table 16, applying DSSCA analysis in a
deep and stacked framework outperforms all the current
methods as well as the atomic local level analysis, and
achieved the outstanding performance of 99.0 percent on
this benchmark, which shows more than 50 percent
improvement on the error rate compared to the atomic local
level SSCA analysis.

Other reported results are also in accord with our results
on other datasets and approve our arguments about the
effectiveness of the the proposed framework.

6.7 Comparison with Single Modality

In Table 17, we compare our method with baseline method
2, based on single modality features. Since each modality
also has holistic and multiple local features, we perform
baseline kernel combination to produce the results. For a
fair comparison, we use kernel combination for classifica-
tion based on our factorized components. It is not surprising
to observe our method outperforms the baseline, since ours
integrates RGB and depth information effectively.

TABLE 14
Comparison of the Results of Our Methods with the Baselines

on RGBD-HuDaAct Dataset

Eval.
Dataset

Baseline
Method 1

Baseline
Method 2

DSSCA
Kernel

DSSCA
SSLM

HuDaAct 95.1% 97.6% 98.3% 99.0%

First column shows the performance of descriptor concatenation on all RGB+D
input features. Second column reports the accuracy of the kernel combination
on the same set of features. Third column shows the result of our correlation-
independence analysis. It employs a kernel combination for classification. Last
column reports the accuracy of proposed structured sparsity learning machine.

TABLE 15
Performance Comparison for Holistic Network, Local Network,

and Stacked Local+Holistic Networks on RGBD-HuDaAct
Dataset

Scenario
Number

Network
Structure

DSSCA
Kernel

DSSCA
SSLM

HuDaAct Holistic 98.3% 99.0%
HuDaAct Local 98.7% 98.7%
HuDaAct Stacked Local+Holistic 98.3% 99.0%

Reported are the results of our method using kernel combination and SSLM.

TABLE 16
Performance Comparison on RGBD-HuDaAct Dataset

Method Accuracy

3D-MHIs [46] 70.5%
iM2EDM [88] 76.8%
MF-HMM [55] 78.6%
DLMC-STIPs [46] 81.5%
DIMC-STIPs [52] 87.7%
STIP HOGHOF+LDP [51] 89.1%
Part-based BOW-Pyramid [54] 91.7%
RGB+D Linear Coding [53] 92.0%
CCA (Atomic Level) 93.9%
CCA-RICA (Atomic Level) 96.4%

Proposed Single Unit SSCA (Atomic Level) 97.9%

Proposed DSSCA-SSLM (Global Level) 99.0%

Fig. 4. Confusion matrix for CCA-RICA method on atomic local level fea-
tures RGBD-HuDaAct dataset. Ground truth action labels are on rows
and detections are on columns of the grid.

Fig. 5. Confusion matrix for SSCA method on atomic local level features
of RGBD-HuDaAct dataset. Ground truth action labels are on rows and
detections are on columns of the grid.
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6.8 Analysis of Component Contributions in the
Classifier

Table 18 shows the proportion of the weights assigned by
SSLM to the factorized components of the stacked local
+holistic networks. The weights of Y3 are relatively high,
which supports our initial argument about robustness and
discriminative properties of the shared factorized com-
ponents. The Z components of the both modalities in all
three layers also gain weights, which shows they also carry
informative features and are complementary for the classi-
fication. The reported values in this table shows how dis-
criminative are the factorized features inside each of these
components. As can be seen, some components achieve
very low (close to zero) values. They hold important compo-
nents in the distribution of the input multimodal data
regardless of the action labels. However, regarding the
action classification task, they don’t have considerable cor-
relation with action labels and cannot contribute very much
in classification, so they gain very low weights.

7 CONCLUSION

This paper presents a new deep learning framework for a
hierarchical shared-specific component factorization, to
analyze RGB+D features of human action videos. Each layer
of the proposed network is an autoencoder based compo-
nent factorization unit, which decomposes its multimodal
input features into common and modality-specific parts.
We further extended our deep factorization framework by
applying it in a convolutional setting.

In addition, we proposed a structured sparsity based
classifier which utilizes mixed norms to apply component
and layer selection for a proper fusion of decomposed fea-
ture components.

Provided experimental results on five RGB+D action rec-
ognition datasets show the strength of our deep shared-
specific component analysis and the proposed structured

sparsity learning machine by achieving the state-of-the-art
performances on all the reported benchmarks.
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