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a b s t r a c t 

The fusion of multiple features is important for achieving state-of-the-art face recognition results. This 

has been proven in both traditional and deep learning approaches. Existing feature fusion methods ei- 

ther reduce the dimensionality of each feature first and then concatenate all low-dimensional feature 

vectors, named as DR-Cat, or the vice versa, named as Cat-DR. However, DR-Cat ignores the correlation 

information between different features which is useful for classification. In Cat-DR, on the other hand, 

the correlation information estimated from the training data may not be reliable especially when the 

number of training samples is limited. We propose a covariance matrix regularization (CMR) technique 

to solve problems of DR-Cat and Cat-DR. It works by assigning weights to cross-feature covariances in the 

covariance matrix of training data. Thus the feature correlation estimated from training data is regular- 

ized before being used to train the feature fusion model. The proposed CMR is applied to 4 feature fusion 

schemes: fusion of pixel values from 3 color channels, fusion of LBP features from 3 color channels, fu- 

sion of pixel values and LBP features from a single color channel, and fusion of CNN features extracted by 

2 deep models. Extensive experiments of face recognition and verification are conducted on databases in- 

cluding MultiPIE, Georgia Tech, AR and LFW. Results show that the proposed CMR technique significantly 

and consistently outperforms the best single feature, DR-Cat and Cat-DR. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Face recognition has been a very active research area due to

its increasing security demands, commercial applications and law

enforcement applications [1–6] . It is often the case in face recog-

nition that no single feature is rich enough to capture all of the

available information [7] . The robust face recognition requires mul-

tiple feature sets to be taken into account [8] , which can be fea-

tures of different color channels [9–12] , different types of features

[8,13,14] and features extracted by different deep models [15–17] .

Recently, Convolutional Neural Networks (CNN) provides an effec-

tive tool for feature learning in face recognition and very promising

results have been obtained as in [18,19] . The pre-trained VGG-Face

model [18] was learned from a large face dataset containing 2.6M

web images of 2622 celebrities and public figures. It is widely used

as a feature extractor for classifying face images as in [20–22] . Dif-

ferent from the architecture of VGG-Face, ResNet in [19] consists of

residual modules which conduct additive merging of signals. The

authors in [19] argue that residual connections are inherently im-
∗ Corresponding author. 
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ortant for training very deep architectures. It is natural to study

he combination of VGG-Face with ResNet, which would allow two

odels to reap the benefits of each other. Thus we train a ResNet-

ike CNN model using images from the recently released CASIA-

ebFace dataset [23] and combine it with the pre-trained VGG-

ace model by feature fusion. 

Feature fusion often results in very high dimensionality. For

xample, multi-scale descriptors in [24] are densely extracted

rom dense landmarks and concatenated together to form a 100K-

imensional feature vector. The high dimensionality of feature vec-

ors imposes great burdens on the robust face recognition task.

herefore, dimensionality reduction is a critical module of feature

usion. Existing feature fusion methods can be generally classified

nto two categories: DR-Cat and Cat-DR. DR-Cat applies dimension-

lity reduction to each feature before the concatenation of multiple

eatures and Cat-DR does vice versa. Choi and et al. [11] use DR-Cat

o reduce the dimension of each color local texture feature sepa-

ately before concatenating all low-dimensional features in the col-

mn order. Tan and et.al [13] use PCA to reduce the dimensionality

f Gabor wavelets and LBP prior to fusing them by averaging their

imilarity scores (same as DR-Cat). DR-Cat is also used in [12,25–

7] . By reducing the dimensionality of each feature separately be-

ore concatenating them together, DR-Cat ignores the correlation

https://doi.org/10.1016/j.sigpro.2017.10.024
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nformation between different features. But the correlation infor-

ation plays an important role in the process of feature fusion. In

rder to utilize the correlation information, Yang and et.al [28] em-

loy Cat-DR to concatenate three color components into one pat-

ern vector first and then perform PCA or EFM on the concatenated

attern vector. Cat-DR is also used in [24] to fuse multi-scale de-

criptors centered at dense facial landmarks. The dimension of the

oncatenated feature is reduced by PCA and LDA. Multiple deep

onvNets are used in [15] to learn face features from images of var-

ous scales, where Cat-DR is employed by applying PCA to the con-

atenation of multiple features. In the case of perfect training data,

at-DR utilizing the correlation information usually achieves better

erformance than DR-Cat. However, in practice, the limited train-

ng data may result in unreliable estimates of cross-feature correla-

ions. This often leads to overfitting and performance degradation

n Cat-DR. 

To solve problems in feature fusion methods of DR-Cat and Cat-

R, we propose a covariance matrix regularization (CMR) tech-

ique. Instead of modifying eigenvalues of covariance matrices as

n conventional regularization techniques [29–33] , CMR works by

egularizing the off-diagonal cross-feature covariances in the co-

ariance matrix of training data. Thus the trace of covariance ma-

rices remains unchanged and the feature correlation estimated

rom the training data is suppressed before being used to train

he feature fusion model. In this way, the obtained model does

ot adapt too much to the estimated correlation and hence the

verfitting is reduced. In the experimental part conducted on four

ublic face databases including MultiPIE, GT, AR and LFW, we first

how that our proposed ResNetShort model achieves state-of-the-

rt face verification performance on LFW. After that, we vary the

alue of weights in CMR to show how it solves the problem of

verfitting and improves the face recognition performance. Then,

e study the relationship between the optimal value of weights in

MR and the number of training images per subject. Finally, we

ompare the performance of CMR against the best single feature,

R-Cat and Cat-DR by fusing features of multiple color channels,

ultiple types of features, and features extracted by multiple deep

odels. 

. Feature fusion in face recognition 

.1. Feature fusion schemes 

Face recognition is an area that is well-suited for the fusion

f multiple descriptors due to its inherent complexity and need

or fine distinctions [8] . Multiple descriptors can be features ex-

racted from different color channels. Y, I, Q components possess

he property of decorrelation, which helps reduce redundancy and

s an important property in pattern classifier design. Thus fea-

ures extracted from Y, I, Q color channels are fused in [9] . Sim-

larly, R, Q, Cr features are fused in [10,11] and Z, R, G features are

used in [12] . Furthermore, multiple descriptors can be different

ypes of features. Authors in [8,13] combine Gabor wavelets and

BP to achieve considerably better performance than either alone.

he two features are complimentary in the sense that LBP captures

mall appearance details while Gabor wavelets encode facial shape

ver a broader range of scales. Fourier features, Gabor wavelets are

ombined in [14] to achieve better performance for face recogni-

ion. Global Fourier features describe the general characteristics of

he holistic face and they are often used for coarse representa-

ion. Differently, local Gabor features reflect and encode more de-

ailed variations within some local facial regions. Moreover, mul-

iple features may be extracted using different deep models. Au-

hors in [15] train 60 ConvNets, each of which extracts two 160-

imensional DeepID vectors from 60 face patches with ten regions,

hree scales, and RGB or gray channels. Combing 60 different deep
odels increases the face verification accuracy by 5.27% over the

est single model. The deep learning structure proposed in [16] is

omposed of a set of elaborately designed CNN models, which ex-

ract complementary facial features from multimodal facial data. 

To investigate the effectiveness of the proposed feature fusion

ethod for face recognition, this paper explores 4 different feature

usion schemes: (1), fusion of pixel values in 3 color channels R,

, B ; (2), fusion of LBP features in 3 color channels R, G, B ; (3),

usion of pixel values and LBP features of a single color channel

 ; (4), fusion of CNN features extracted by 2 deep models. Many

ecent face recognition works conduct experiments on pixel val-

es to evaluate the face recognition performance of their meth-

ds [34–37] . LBP has been proven to be highly discriminative for

ace recognition [24,38] . Thus these two features are used for the

ask of fusing features of different color channels R, G, B and the

ask of fusing different types of features in channel R . As R channel

as been shown to perform better than other intensity images in-

luding Gray for face retrieval [11,34] , we take the R channel as an

xample channel for the fusion of different types of features. For

he fusion of multiple deep learning features, we utilize the pre-

rained VGG-Face model and propose a new deep model, ResNet-

hort, presented in the following section. 

.2. Deep learning feature fusion: VGG-Face and ResNetShort 

Convolutional Neural Networks have significantly improved the

tate of the arts in face recognition [39] . VGG-Face is a deep neural

etwork proposed by Simonyan et al. in [18] . This network is char-

cterized by using 3 × 3 convolutional layers stacked on top of each

ther in increasing depth. The architecture of VGG-Face comprises

1 layers, which consist of 13 convolutional layers, 5 maxpooling

ayers and 3 fully connected layers. The first two fully connected

ayers are 4096 dimensional and the dimension of the last fully

onnected layer depends upon the loss functions used for optimi-

ation. The pre-trained VGG-Face model was learned from a large

ace dataset (see Fig. 1 for sample images) containing 2.6M im-

ges of 2622 celebrities and public figures. Faces are detected using

he method described in [40] and a 2D similarity transformation is

pplied to map the face to a canonical position. VGG-Face is first

rained as a multi-class classification problem by minimizing the

oftmax loss and then fine-tuned by the recently proposed triplet

oss [41] . The pre-trained VGG-face model has been widely used by

esearchers to extract CNN features from face images as in [20–22] .

Unlike traditional sequential network architectures such as

GG, ResNet consists of “network-in-network” modules. First in-

roduced by He et al. in [19] , ResNet has become a seminal work,

emonstrating that the degradation problem of deep networks can

e solved through the use of residual modules. ResNet layers are

ormulated as learning residual functions with reference to the

ayer inputs. By referring to the CNN model used in [42] and resi-

ential modules, we propose a model as shown in Fig. 2 and name

t ResNetShort. The size of filters in convolution layers is 3 × 3 with

tride 1, followed by PReLU [43] non-linear units. The max-pooling

rid is 2 × 2 and the stride is 2. The number of feature maps in

onvolutional layers or the dimension of fully connected layers is

ndicated by the number on top of each layer. ‘ × h ’ represents a

esidual module that repeats for h times. Joint supervision of soft-

ax loss and center loss [42] is adopted. The value of λ, which is

sed for balancing the softmax and center loss functions, is set as

.005. 

The recently released CASIA-WebFace [23] database is used to

rain the ResNetShort model. CASIA-WebFace contains 494,414 im-

ges of 10,575 subjects. According to [44] , adding the individuals

ith only a few instances do not help to improve the recognition

erformance. Indeed, these individuals will harm the systems per-

ormance. Thus the 10,575 subjects are ranked in the descent or-
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Fig. 1. Sample face images from VGG Face database. 

Fig. 2. The ResNetShort architecture, where C, P, and F indicate convolutional, max pooling, and fully connected layers, respectively. 

Fig. 3. Normalized face images from CASIA-WebFace database. 

Table 1 

Comparison between the pre-trained VGG-Face model and our trained 

ResnetShort model, CONV and FC indicate convolutional and fully con- 

nected layers, respectively. 

Model VGG-Face ResNetShort 

Training data VGG Face CASIA-WebFace 

Face alignment vanilla DPM [40] TCDCN [45] 

Input size 224 × 224 × 3 112 × 96 × 3 

Architecture CONV + FC Residual modules 

Non-linear units ReLU PReLu 

Feature size 4096 512 

Supervision signals softmax + triplet loss softmax + center loss 
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der by the number of their images contained in the database. The

434,793 images of the top 9067 subjects, which contain at least 14

images per subject, compose the training set. The remaining im-

ages of the rest 1508 subjects are discarded. Face images are nor-

malized to 112 × 96 pixels with an affine transformation according

to the coordinates of five sparse facial points, i.e., both eye centers,

the nose tip, and both mouth corners. Sample images after the

affine transformation are shown in Fig. 3 . We employ an off-the-

shelf face alignment tool [45] for facial point detection and double

the size of the training set by flipping all training images horizon-

tally. The open-source deep learning toolkit Caffe [46] is utilized to

train the deep model. During training, the batch size is set to 256.

The initial learning rate for all learning layers is set to 0.1, and is

divided by 10 after 16,0 0 0 iterations, and is then divided by 10 af-

ter 80 0 0 iterations to the final rate of 0.001. The total number of

iterations is 280 0 0. 

Both the pre-trained VGG-Face model and our proposed and

trained ResNetShort model achieve state-of-the-art face verifica-

tion performance on challenging face datasets (refer to Section 5.1 ).

A comprehensive comparison between these two deep models is

given on Table 1 . From which we can observe that, these two mod-

els are trained from different face images by optimizing different

loss functions through different deep architectures. This makes the

learned discriminative information contained in VGG-Face features

and ResNetShort features mutually complementary to each other.
herefore, we combine these two CNN models by feature fusion

o effectively make use of their discriminative information. Feature

usion methods for face recognition are discussed in following sec-

ions. 

. Feature fusion with dimensionality reduction 

Fusing multiple feature sets has many successful applications

n face recognition. However, the fusion of multiple features in-

vitably causes the problem of high dimensionality. It is well

nown that high dimensionality degrades the classification perfor-

ance (curse of dimensionality) [47,48] . Thus, dimension reduc-

ion becomes an integrated part of feature fusion. PCA [49] is com-

only used as a benchmark for the evaluation of the performance

n FR algorithms [50] and it may significantly enhance the recog-

ition accuracy [51,52] . Plenty of color face recognition methods

dopt the Enhanced Fisher Model (EFM) [35,36,53] . Therefore, PCA

nd EFM are used in this work as dimension reduction methods. 

.1. PCA and EFM 

Suppose a face image is represented by a feature vector x , its

otal covariance matrix �t and within-class covariance matrix �w 

re defined in Eq. (1) and Eq. (2) , respectively. x ij denotes j -th sam-

le of class i , i = 1 , 2 , . . . , p, j = 1 , 2 , . . . , q i . p indicates the number

f classes and q i indicates the number of samples for class i . x i in-

icates the mean of training samples in class i and x indicates the

ean of all training samples and T indicates transpose. 

t = 

p ∑ 

i =1 

q i ∑ 

j=1 

(x i j − x )(x i j − x ) T . (1)

w 

= 

p ∑ 

i =1 

q i ∑ 

j=1 

(x i j − x i )(x i j − x i ) 
T . (2)

PCA uses the Karhunen-Loeve Transform to produce the most

xpressive subspace for face representation and recognition. It fac-

orizes �t in Eq. (3) and obtain the eigenvector matrix �. Eigen-

ectors corresponding to d largest eigenvalues in � are used as the
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rojection matrix P in Eq. (4) to compute the d -dimensional vector

 in the PCA subspace. 

t = ���T . (3) 

 = P T x . (4)

n order to use the Mahalanobis distance for similarity compari-

on between y rather than the Euclidean distance, we compute

he within-class covariance matrix �wy of y according to Eq. (2) .

igenvector matrix �wy and eigenvalue matrix �wy of �wy are de-

ived similarly as in Eq. (3) . Then the whitening matrix Q is com-

uted in Eq. (5) . 

 = �wy (�wy ) 
− 1 

2 (5) 

he final d -dimensional vector z for distance comparison is 

 = Q 

T P T x = U 

T x . (6)

Enhanced Fisher Model [54] is an example of discriminating

ubspace methods. It achieves high separability among the differ-

nt pattern classes. The first step of EFM is the same as PCA in

q. (4) . After that, EFM computes the within-class covariance ma-

rix �wy , and the between-class covariance matrix �by of y which

s computed according to Eq. (7) . 

by = 

p ∑ 

i =1 

q i ( y i − y )( y i − y ) T . (7)

Eigenvector matrix �wb and eigenvalue matrix �wb are derived

y solving the eigenvalue problem below 

−1 
wy �by = �wb �wb �

T 
wb . (8) 

hen a projection matrix H consisting of eigenvectors in �wb cor-

esponding to d ′ largest eigenvalues in �wb is used to compute the

nal d ′ -dimensional vector z 

 = H 

T P T x = U 

T x . (9)

Many other dimension reduction methods are modifications or

xtensions of the above two methods. Thus PCA and EFM are taken

s two representative dimension reduction methods used in this

ork. 

.2. DR-Cat approach 

Let x 1 , . . . , x n , . . . , x N be N vectors of different features extracted

rom the same face. DR-Cat approach computes the covariance

atrix �n for each feature vector x n separately, where �n can

e a total covariance matrix, within-class covariance matrix or

etween-class covariance matrix. From �n , the projection matrix

 

n is derived to project the high-dimensional feature vector x n 

o a low-dimensional feature vector z n as in Eq. (6) of PCA or

q. (9) of EFM. Note that the covariance matrix �n provides only

ithin-feature information, which means that the dimension re-

uction is implemented independently on each feature. Then low-

imensional feature vectors z 1 , . . . , z n , . . . , z N are concatenated into

 for classification as in equation (10). Each low-dimensional fea-

ure vector is normalized to have zero mean and unit variance

rior to their concatenation. 

 = [ z 1 ; . . . ; z n ; . . . ; z N ] 

= [(U 

1 ) T x 

1 ; . . . ; (U 

n ) T x 

n ; . . . ; (U 

N ) T x 

N ] . (10) 

.3. Cat-DR approach 

Cat-DR approach concatenates different feature vectors x n into

n overall feature vector x , x = [ x 1 ; . . . ; x n ; . . . ; x N ] , to make use of
heir correlation information. Different feature vectors are normal-

zed to have zero mean and unit variance before concatenation.

hen the projection matrix U is derived from the covariance matrix

of the overall feature vector x as in Eq. (6) of PCA or Eq. (9) of

FM to project x to a low-dimensional feature vector z in equation

11) for classification. 

 = U 

T x 

= U 

T [ x 

1 ; . . . ; x 

n ; . . . ; x 

N ] . (11) 

. Covariance matrix regularization for feature fusion 

.1. Covariance matrices in DR-Cat and Cat-DR 

The projection matrices, U 

n in DR-Cat and U in Cat-DR, are de-

ived from the covariance matrices of training data, �n in DR-Cat

nd � in Cat-DR, respectively. �n are in fact submatrices of �. The

ovariance matrix carries two different kinds of information: data

ariances of the variables and the covariances between each pair

f variables. �n consists of data variances and covariances within

eature x n while � possesses both within-feature covariances and

ross-feature covariances. For a better understanding, we represent

he covariance matrix � as: 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

�11 . . . �1 n . . . �1 N 

. . . 
. . . 

. . . 
. . . 

. . . 
�n 1 . . . �nn . . . �nN 

. . . 
. . . 

. . . 
. . . 

. . . 
�N1 . . . �Nn . . . �NN 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (12) 

s shown in Eq. (12) , � can be represented as a block covari-

nce matrix whose entries are partitioned into within-feature sub-

atrices, denoted by �nn , n = 1 , 2 , . . . , N, which are the same as
n in DR-Cat, and cross-feature submatrices, denoted by �nm 

, n � =
, n, m = 1 , 2 , . . . , N, which are ignored in DR-Cat. 

Within-feature submatrix �nn is computed by feature vectors

 

n . It contains data variances and covariances within feature vec-

or x n . Cross-feature submatrix �nm 

contains data covariances be-

ween two different features x n and x m . These cross-feature co-

ariances have critical influence on the process of fusing different

eatures. DR-Cat derives its projection matrix U 

n from �nn , ignor-

ng the correlation between different f eatures contained in �nm 

.

at-DR makes use of both �nn and �nm 

to derive U for feature

usion. In the ideal case of perfect training data which provides re-

iable and consistent information with the data population, Cat-DR

chieves better performance than DR-Cat. However, in practice, the

imited number of training samples may result in unreliable es-

imates of the cross-feature covariances, which causes overfitting

nd may make Cat-DR underperform DR-Cat. 

.2. Overfitting and covariance matrix regularization 

Overfitting is a modelling error which occurs when a function

s too closely fit to a limited set of training data. In reality, the

ata being studied often has some degree of noise or error within

t. Thus making a model conform closely to inaccurate data can

ffect the model with substantial errors and reduce its predictive

ower. The degree of overfitting depends on the level of noise in

he training data. 

In general, Cat-DR should deliver better performance than DR-

at as it takes account of the correlation information between dif-

erent features. However, the correlation information is estimated

rom the training data, which usually deviates from that of the

ata population, especially in the case of limited number of train-

ng samples. When the feature fusion model is trained to closely

onform to the estimated correlation information from the finite
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Algorithm 1 Covariance Matrix Regularization (CMR) using PCA or 

EFM. 

1: Calculate the total covariance matrix �t , and within-class co- 

variance matrix �w 

of x as in equation (1) and equation (2). 

2: Apply CMR to �t as in equation (13) and calculate P R from �R 
t 

according to equation (3). 

3: Apply CMR to �w 

as in equation (13) and apply P R to �R 
w 

to 

obtain �R 
wy as in equation (14). 

4: Derive projection matrices using �R 
t and �R 

wy according to 

equation (6) for PCA or equation (9) for EFM. 
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training data, the resulting model will show overfitting and perfor-

mance degradation on the data population or new data. 

In order to reduce overfitting by regularization, authors in

[29,30] add a constant to diagonal elements of the covariance ma-

trix. Another solution is to decompose the discriminant function

into two parts and replace the small eigenvalues of the covariance

matrix by a constant as in [31,32] . Besides adding a constant to all

eigenvalues or replacing the unreliable eigenvalues by a constant

as discussed above, ERE in [33] replaces the unreliable eigenval-

ues with a model determined by the reliable eigenvalues. These

three methods regularize the biased covariance matrix of training

data by modifying its eigenvalues thus the regularized eigenspec-

trum can be closer to the population variances. However, modify-

ing eigenvalues changes the trace of the covariance matrix and re-

duces the discriminating power of features themselves. In this pa-

per, we propose a covariance matrix regularization (CMR) method

to solve the problem of unreliable estimates of cross-feature cor-

relations in feature fusion. Instead of modifying eigenvalues, it as-

signs weights w nm 

, 0 < w nm 

< 1, to cross-feature submatrices �nm 

in the covariance matrix � as shown below: 

�R = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

�11 . . . w 1 n ∗ �1 n . . . w 1 N ∗ �1 N 

. . . 
. . . 

. . . 
. . . 

. . . 
w n 1 ∗ �n 1 . . . �nn . . . w nN ∗ �nN 

. . . 
. . . 

. . . 
. . . 

. . . 
w N1 ∗ �N1 . . . w Nn ∗ �Nn . . . �NN 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(13)

The optimal value of w nm 

depends on how much regularization

is required for two different features x n and x m 

, which can be

estimated using some prior knowledge of feature properties and

training data. For example, a relatively small weight is required in

the case of large deviation between the estimated correlation and

that of the data population. Experimental evaluation of the opti-

mal value of weights in CMR can be found in Section 5.3 . By using

CMR, the influence of correlation information estimated from the

training data is suppressed. The feature fusion model learns from

but does not adapt too much to the estimated correlation thus in-

creases its generalization ability to unknown instances. 

When fusing features, the technique of CMR defined in

Eq. (13) is applied to the total covariance matrix and the within-

class covariance matrix of training data. It is straightforward to

compute �R 
t from �t defined in Eq. (1) according to Eq. (13) .

The within-class covariance matrix �wy is computed in the PCA

subspace, where different original features are mixed in the low-

dimensional feature vectors y . Therefore, the within-class covari-

ance matrix in the PCA subspace can not be directly regularized

as in Eq. (13) . To solve this problem, we apply CMR to the within-

class covariance matrix of original feature vectors x , �w 

defined

in Eq. (2) , to compute �R 
w 

according to Eq. (13) . Then, we apply

P R , which consists of d largest eigenvectors of �R 
t , to �R 

w 

as in

Eq. (14) to compute the regularized within-class covariance matrix

in the PCA subspace �R 
wy . 

�R 
wy = (P R ) T �R 

w 

P R . (14)

Details of the proposed CMR method are summarized in

Algorithm 1 . 

5. Experiments 

We assess the effectiveness of the proposed CMR technique for

face recognition under 4 different feature fusion schemes: (1), fu-

sion of pixel values from R, G, B channels; (2), fusion of LBP fea-

tures from R, G, B channels; (3), fusion of pixel values and LBP fea-

tures in the R channel; (4), fusion of CNN features extracted by
GG-Face and ResNetShort models. Extensive experiments are con-

ucted on four publicly available face databases: MultiPIE [55] , GT

56] , AR [57] , and LFW [58] . 

The Multi-PIE database contains face images captured under

ariations of illumination, poses and expressions in four record-

ng sessions. We use the largest variation subset, illumination sub-

et, which consists of 105 subjects with 80 face images per subject

cross 4 sessions (20 images per subject in each session). Similar

o [59] , we randomly choose s samples from 20 samples per sub-

ect in session 1 as the training and gallery data. Remaining 6300

ace images of 105 subjects in session 2 to session 4 serve as query

ata. The nearest neighbor classifier with mahalanobis distance is

sed for classification. The gallery image is obtained by averag-

ng all training samples per person. Face regions are cropped from

riginal images and resized to the resolution of 32 × 32 for extrac-

ion of pixel values, LBP and CNN features. The patch size of LBP

perator is set to be 4 × 4. Sample images are shown in Fig. 4 . 

The Georgia Tech (GT) [56] face database consists of 50 sub-

ects with 15 images per subject. It characterizes several variations

uch as pose, expression, cluttered background, and illumination

see Fig. 5 ). Similar to Multi-PIE database, we randomly choose s

amples from 15 samples per subject as the training and gallery

ata. Remaining (15 − s ) face images per subject serve as query

ata. The classifier is same as that used on Multi-PIE. The original

mages are downsampled to the size of 32 × 32 for extraction of

ixel values, LBP and CNN features. The patch size of LBP is set to

e 8 × 8. 

The AR face database contains over 40 0 0 color face images of

26 people, including frontal views of faces with different facial ex-

ressions, lighting conditions and occlusions. The pictures of most

ersons were taken in two sessions (separated by two weeks). In

ur experiments, 100 subjects with 14 frontal-face images per sub-

ect across 2 sessions (7 images per subject in each session) are

elected. Only the full facial images were considered here (no at-

empt was made to handle occluded face recognition). In each ses-

ion, there are 7 undisguised images with different facial expres-

ions and lighting conditions for each subject. Similarly to before,

e randomly choose s samples from 7 samples per subject in ses-

ion 1 as the training and gallery data. Remaining 700 face im-

ges of 100 subjects in session 2 serve as query data. The classi-

er is same as that used on Multi-PIE. Face portions are manu-

lly cropped from original images and resized to the resolution of

2 × 32 for extraction of pixel values, LBP and CNN features. The

atch size of LBP operator is set to be 8 × 8. Sample images are

hown in Fig. 6 . 

The LFW database contains 13,233 images of 5749 subjects. Im-

ges in this database exhibit rich intra-personal variations of pose,

llumination, and expression. It has been extensively studied for

he research of unconstrained face recognition in recent years. In

his paper, we follow the “Unrestricted, Labeled Outside Data Re-

ults” protocol defined in [58] and report the mean verification ac-

uracy by the 10-fold cross-validation scheme on the View 2 data.

ace images are normalized and aligned using the same method on
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Fig. 4. Sample face images from the illumination variation subset of Multi-PIE database. 

Fig. 5. Sample face images from Georgia Tech face database. 

Fig. 6. Sample face images from AR database. 

Fig. 7. Sample face images from LFW database. 
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ASIA-WebFace images. For the face verification paradigm, we use

he CNN features provided by the VGG-Face model and the Resnet-

hort model as the raw representation of each test sample. Then,

e adopt cosine distance for similarity calculation ( Fig. 7 ). 

A number of experiments are conducted. To begin with, we

valuate the face verification performance of the pre-trained VGG-

ace model and our proposed ResNetShort model on the challeng-

ng LFW dataset. Then, by decreasing the value of weights from

 to 0, we validate that CMR solves the overfitting problem and

mproves the face recognition performance. After that, we show

hat with the number of training samples per subject decreasing,

tronger regularization should be applied to the estimated cross-

eature covariances by using smaller weights in CMR. Finally, the

ace recognition performance of the proposed CMR technique is

ompared with that of the best single feature, DR-Cat and Cat-

R by fusing features from multiple color channels, multiple types

f features, and features extracted by different deep models. For

he convenience and clarity of all experiments, we adopt the same

alue w for w nm 

, w nm 

= w, in CMR. 

.1. Performance evaluation of ResNetShort features 

In this experiment, the face verification performance of ResNet-

hort is evaluated on the challenging LFW database. Following

he “Unrestricted, Labeled Outside Data Results” protocol, we in-

ut aligned face images to ResNetShort models and take the out-

ut of the first fully-connected layer as the deep features. The un-

upervised diagram is used here, where PCA and cosine distance

re used to calculate the similarity between two CNN features. We

valuate the covariance matrix of CNN features for PCA using the

 training folds of LFW data in the 10-fold cross validation. The

ace verification performances of VGG-Face and ResNetShort are re-

orted in Table 2 , we also compare them with other state-of-the-
rt models DeepID [60] and Canonical View CNN [61] , which have

een peer-reviewed and published. FaceNet [41] is not included in

able 2 for comparison, as it is trained from 260M images of 8M

ubjects and uses a complex triplets selection algorithm. It is not

air to compare it with other deep models trained using less than

.5M images. We can observe from Table 2 , the proposed ResNet-

hort model achieves comparable performance to other CNN mod-

ls. 

.2. Evaluation of CMR against the level of regularization 

Here, we conduct experiments to investigate how different lev-

ls of covariance matrix regularization make influence on the face

ecognition performance. Specifically, we vary the value of weights

 in CMR from 1 to 0, so that its regularizing effect on the cross-

eature covariances changes from weaker to stronger. 

This experiment is carried out on Multi-PIE, GT and AR datasets.

ace images in different color channels are arranged into column

ectors as features of pixel values and LBP features are extracted

rom different channels separately. The radius and the number of

ampling points in the LBP operator are set as 1 and 8 through our

aper. For features of pixel values and LBP, the numbers of training

amples per subject s are 4 on Multi-PIE, 5 on GT and 4 on AR. For

NN features, s equals 2 on Multi-PIE, GT and AR to increase the

ifficulty of the face recognition task. 

We report the face recognition performances of different

eights in CMR by face recognition rate (FRR), which is the ra-

io of the number of correctly classified query images to the to-

al number of query images. Note that, among all tested feature

imensions of PCA and EFM, the best found FRR is reported. We

lot FRR against the value of weights in CMR for 4 different fea-

ure fusion schemes on Fig. 8 and Fig. 9 . As we can observe, when

he value of weights in CMR decreases from 1 to zero, the FRR
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Table 2 

Face verification accuracy (%) of ResNetShort, VGG-Face, DeepID and Canonical CNN 

on LFW. 

Model ResNetShort VGG-Face DeepID [60] Can. CNN [61] 

Verif. metric Cosine Cosine Joint Bayes Joint Bayes 

Mean accuracy (%) 98.72 97.93 97.45 96.45 

Fig. 8. Face recognition rates (%) of fusing features (pixel values or LBP) of 3 color channels (R,G,B) against the value of weights in CMR on Multi-PIE, GT and AR. Each 

column specifies one type of feature (pixel values or LBP) and each row specifies one dataset (Multi-PIE, GT and AR). 
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increases to the maximum point and then decreases for all 4 fea-

ture fusion schemes on all three databases. The best performance

is achieved at weight of 0.5 ∼ 0.9. One clear and consistent conclu-

sion summarized from Fig. 8 and Fig. 9 is that, applying CMR to

feature fusion improves the face recognition performance consis-

tently on all 4 feature fusion schemes and all 3 datasets. 

5.3. The optimal value of weights in CMR for different training data 

In this section, we investigate how the optimal value of weights

in CMR will change with the decreasing of the number of train-

ing samples per subject. The experiment is conducted on GT and

AR datasets, where CMR is used for fusing LBP features of differ-

ent color channels (R, G, B) and PCA is used for dimension reduc-

tion. The FRR of CMR trained by s samples per subject are plotted

against the regularization parameter w on Fig. 10 for GT and on

Fig. 11 for AR. On GT, s = 10, 5, 3 are tested. On AR, s = 6, 5, 4 are

tested. As we can observe from Fig. 10 and Fig. 11 , when the num-

ber of training samples per subject decreases, the optimal value of

weights in CMR (indicated by dotted lines) that achieves the best
ace recognition performance also deceases. As fewer training sam-

les per subject are provided to the feature fusion model, the esti-

ated cross-feature covariances from training data are less reliable

nd hence need more regularization. Thus lower weights should be

ssigned to the cross-feature covariances in CMR with smaller size

f training data provided. 

.4. Performance comparison of CMR against the best single feature, 

R-Cat and Cat-DR 

To systematically compare the performance of CMR with that

f the best single feature, DR-Cat and Cat-DR, we conduct exper-

ments on Multi-PIE, GT, AR and LFW datasets. In CMR, we vary

he value of w from 0 to 0.9 with step size of 0.1 and report the

est classification performance. Training and testing protocols of

ulti-PIE, GT and AR are the same as those in Section 5.2 . To in-

rease the difficulty of the face verification task on LFW, only 1

raining fold in the 10-fold cross validation is used to train PCA

r EFM, remaining 9 training folds are used for testing. Other ex-

erimental settings remain the same as in Section 5.1 . We show
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Fig. 9. Face recognition rates (%) of fusing different types of features (pixel values and LBP of channel R ) and fusing features extracted by different deep models (VGG-Face 

and ResNetShort) against the value of weights in CMR on Multi-PIE, GT and AR. Each column specifies one type of feature fusion (multi-type or multi-model) and each row 

specifies one dataset (Multi-PIE, GT and AR). 

Table 3 

Face recognition performances of the best single feature, DR-Cat, Cat-DR 

and CMR using pixel values of multiple color channels on Multi-PIE, GT 

and AR. 

Pixel values Multi-PIE GT AR 

PCA EFM PCA EFM PCA EFM 

B.S. channel 81.73 81.95 79.20 79.60 79.86 80.00 

DR-Cat 80.95 80.73 81.00 81.40 83.14 82.86 

Cat-DR 81.29 81.13 83.40 84.00 81.29 81.57 

CMR 83.08 83.27 85.00 85.20 84.29 84.14 

Table 4 

Face recognition performances of the best single feature, DR-Cat, Cat-DR 

and CMR using LBP of multiple color channels on Multi-PIE, GT and AR. 

LBP Multi-PIE GT AR 

PCA EFM PCA EFM PCA EFM 

B.S. channel 82.40 82.24 79.20 79.60 80.71 81.14 

DR-Cat 84.79 84.71 86.60 86.80 85.86 86.14 

Cat-DR 83.63 83.49 86.80 86.80 85.57 85.43 

CMR 85.94 85.89 88.20 88.00 88.29 88.71 

t  

o  

f  

o  

Table 5 

Face recognition performances of the best single feature, DR-Cat, Cat-DR 

and CMR using pixel values and LBP of channel R on Multi-PIE, GT and 

AR. 

R Multi-PIE GT AR 

PCA EFM PCA EFM PCA EFM 

B.S. feature 83.08 82.83 83.60 83.40 78.57 78.86 

DR-Cat 88.51 88.29 86.20 86.60 82.86 83.14 

Cat-DR 87.97 87.98 84.60 85.00 81.86 81.71 

CMR 90.16 90.03 88.00 87.80 84.86 85.14 

a  

t  

n

 

t  

o  

f  

A  

s  

T  

f  

t  

D  

i  

t  
he FRR of the best single (B.S.) feature, DR-Cat, Cat-DR and CMR

n Tables 3–6 for the fusion of pixel values of R, G, B channels, the

usion of LBP of R, G, B channels, the fusion of pixel values and LBP

f channel R , and the fusion of CNN features extracted by VGG-Face
nd ResNetShort, respectively. We use bold texts and underline

exts to highlight the highest and the second highest face recog-

ition/verification accuracy among all methods, respectively. 

As shown in Tables 3–6 , the best single feature performs worse

han all feature fusion methods (DR-Cat, Cat-DR and CMR) in 22

f the 26 experiments, which indicates that the fusion of multiple

eatures is effective in promoting the face recognition performance.

lthough Cat-DR should perform better than DR-Cat in the ideal

ituation, it outperforms DR-Cat only in 11 of the 26 experiments.

his shows that the full use of correlation information estimated

rom the training data causes overfitting that reduces the predic-

ive accuracy. We propose the CMR technique to solve problems in

R-Cat and Cat-DR. In CMR, the correlation information is regular-

zed and then used to train the feature fusion model. Results show

hat the proposed CMR consistently performs better than the best
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Table 6 

Face recognition/verification performances of the best single model, DR-Cat, Cat-DR and 

CMR using CNN features of multiple deep models on Multi-PIE, GT, AR and LFW. 

CNN Multi-PIE GT AR LFW 

PCA EFM PCA EFM PCA EFM PCA EFM 

B.S. model 94.89 95.08 97.85 97.38 91.43 91.57 97.14 97.14 

DR-Cat 96.89 96.65 94.92 94.62 93.86 94.43 97.56 97.42 

Cat-DR 96.89 97.08 98.15 98.00 93.14 93.00 97.28 97.44 

CMR 98.02 97.94 98.92 98.77 95.57 95.71 97.80 97.83 

Fig. 10. Face recognition rates against the value of weights of CMR for different 

numbers ( s ) of samples per subject on GT. 

Fig. 11. Face recognition rates against the value of weights of CMR for different 

numbers ( s ) of samples per subject on AR. 
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single feature, DR-Cat and Cat-DR for fusing features of different

color channels, different types of features and features extracted

by different deep models in all 26 experiments. 
. Conclusion 

In this paper, we propose a covariance matrix regularization

CMR) technique to utilize the correlation between different fea-

ures and reduce overfitting during the fusion of multiple features.

t works by assigning weights to the cross-feature submatrices of

ovariance matrices of training data to suppress the influence of

orrelation between different features, which is estimated from the

raining data, in feature fusion. Extensive experiments conducted

n four popular face databases show that the proposed CMR tech-

ique consistently outperforms the best single feature, DR-Cat and

at-DR for fusing features of different color channels, different

ypes of features and features extracted by different deep models. 

cknowledgments 

This research was carried out at the Rapid-Rich Object Search

ROSE) Lab at the Nanyang Technological University, Singapore.

his research was partly supported by Singapore Ministry of Edu-

ation Academic Research Fund Tier 1 RG 123/15 . The ROSE Lab is

upported by the National Research Foundation , Singapore, under

ts Interactive Digital Media (IDM) Strategic Research Programme. 

eferences 

[1] Y.K. Park , S.L. Park , J.K. Kim , Retinex method based on adaptive smooth-
ing for illumination invariant face recognition, Signal Process. 88 (8) (2008)

1929–1945 . 
[2] Z. Zheng , F. Yang , W. Tan , J. Jia , J. Yang , Gabor feature-based face recognition

using supervised locality preserving projection, Signal Process. 87 (10) (2007)

2473–2483 . 
[3] T. Mandal , Q.J. Wu , Y. Yuan , Curvelet based face recognition via dimension re-

duction, Signal Process. 89 (12) (2009) 2345–2353 . 
[4] B. Xiao , X. Gao , D. Tao , X. Li , A new approach for face recognition by sketches

in photos, Signal Process. 89 (8) (2009) 1576–1588 . 
[5] D.V. Jadhav , R.S. Holambe , Radon and discrete cosine transforms based feature

extraction and dimensionality reduction approach for face recognition, Signal

Process. 88 (10) (2008) 2604–2609 . 
[6] K.W. Bowyer , K. Chang , P. Flynn , A survey of approaches and challenges in 3d

and multi-modal 3d+ 2d face recognition, Comput. Vis. Image Understanding
101 (1) (2006) 1–15 . 

[7] C. Liu , H. Wechsler , A shape-and texture-based enhanced fisher classifier for
face recognition, IEEE Trans. Image Process. 10 (4) (2001) 598–608 . 

[8] X. Tan , B. Triggs , Fusing Gabor and lbp feature sets for kernel-based face recog-

nition, in: International Workshop on Analysis and Modeling of Faces and Ges-
tures, Springer, 2007, pp. 235–249 . 

[9] Z. Liu , C. Liu , Fusion of the complementary discrete cosine features in the YIQ
color space for face recognition, Comput. Vis. Image Understanding 111 (3)

(2008) 249–262 . 
[10] Z. Liu , C. Liu , Fusion of color, local spatial and global frequency information for

face recognition, Pattern Recognition 43 (8) (2010) 2882–2890 . 

[11] J.Y. Choi , Y.M. Ro , K.N. Plataniotis , Color local texture features for color face
recognition, IEEE Trans. Image Process. 21 (3) (2012) 1366–1380 . 

[12] S.H. Lee , J.Y. Choi , Y.M. Ro , K.N. Plataniotis , Local color vector binary patterns
from multichannel face images for face recognition, IEEE Trans. Image Process.

21 (4) (2012) 2347–2353 . 
[13] X. Tan , B. Triggs , Enhanced local texture feature sets for face recognition

under difficult lighting conditions, IEEE Trans. Image Process. 19 (6) (2010)
1635–1650 . 

[14] Y. Su , S. Shan , X. Chen , W. Gao , Hierarchical ensemble of global and local clas-

sifiers for face recognition, IEEE Trans. Image Process. 18 (8) (2009) 1885–1896 .
[15] Y. Sun , X. Wang , X. Tang , Deep learning face representation from predicting

10,0 0 0 classes, in: IEEE Conf. Computer Vision and Pattern Recognition, 2014 . 
[16] C. Ding , D. Tao , Robust face recognition via multimodal deep face representa-

tion, IEEE Trans. Multimedia 17 (11) (2015) 2049–2058 . 

https://doi.org/10.13039/501100001381
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0001
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0001
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0001
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0001
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0002
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0005
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0005
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0005
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0006
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0006
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0006
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0006
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0007
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0008
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0008
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0008
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0010
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0010
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0010
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0011
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0012
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0012
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0012
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0012
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0012
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0013
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0013
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0013
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0014
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0016


Z. Lu et al. / Signal Processing 144 (2018) 296–305 305 

 

 

 

 

[  

 

 

 

[  

 

[  

 

 

[  

[  

 

[  

[  

 

[  

 

[  

 

[  

 

 

[  

 

 

[  

 

[  

[  

 

 

 

[  

 

[  

 

[  

[  

 

[  

 

 

[  

[
[  

 

 

[  

 

[  

 

[  

[  

[

[  

 

 

[  

 

[  

 

 

 

[17] Z. Tu , J. Cao , Y. Li , B. Li , MSR-CNN: applying motion salient region based de-
scriptors for action recognition, in: Intl. Conf. Pattern Recognition, IEEE, 2016,

pp. 3524–3529 . 
[18] O.M. Parkhi , A. Vedaldi , A. Zisserman , Deep face recognition, in: British Ma-

chine Vision Conference, 1, 2015, p. 6 . 
[19] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition,

in: IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 770–778 . 
20] F. Gurpinar , H. Kaya , H. Dibeklioglu , A. Salah , Kernel ELM and CNN based facial

age estimation, in: The IEEE Conf. Computer Vision and Pattern Recognition

(CVPR) Workshops, 2016 . 
[21] K. Zhang , L. Tan , Z. Li , Y. Qiao , Gender and smile classification using deep con-

volutional neural networks, in: The IEEE Conf. Computer Vision and Pattern
Recognition (CVPR) Workshops, 2016 . 

22] X. Peng , Z. Xia , L. Li , X. Feng , Towards facial expression recognition in the wild:
a new database and deep recognition system, in: IEEE Conf. Computer Vision

and Pattern Recognition Workshops, 2016, pp. 93–99 . 

23] D. Yi, Z. Lei, S. Liao, S.Z. Li, Learning face representation from scratch, arXiv
preprint arXiv:1411.7923 (2014). 

[24] D. Chen , X. Cao , F. Wen , J. Sun , Blessing of dimensionality: high-dimensional
feature and its efficient compression for face verification, in: IEEE Conf. Com-

puter Vision and Pattern Recognition, 2013, pp. 3025–3032 . 
25] Z. Lu , X. Jiang , A.C. Kot , A color channel fusion approach for face recognition,

IEEE Signal Process. Lett. 22 (11) (2015) 1839–1843 . 

26] Z. Liu , C. Liu , A hybrid color and frequency features method for face recogni-
tion, IEEE Trans. Image Process. 17 (10) (2008) 1975–1980 . 

[27] J.Y. Choi , Y.M. Ro , K.N. Plataniotis , Boosting color feature selection for color face
recognition, IEEE Trans. Image Process. 20 (5) (2011) 1425–1434 . 

28] J. Yang , C. Liu , Color image discriminant models and algorithms for face recog-
nition, IEEE Trans. Neural Netw. 19 (12) (2008) 2088–2098 . 

29] J. Lu , K.N. Plataniotis , A.N. Venetsanopoulos , Regularization studies of linear

discriminant analysis in small sample size scenarios with application to face
recognition, Pattern Recognit. Lett. 26 (2) (2005) 181–191 . 

30] S. Ji , J. Ye , Generalized linear discriminant analysis: a unified framework and
efficient model selection, Trans. Neural Netw. 19 (10) (2008) 1768–1782 . 

[31] B. Moghaddam , A. Pentland , Probabilistic visual learning for object representa-
tion, Trans. Pattern Anal. Mach. Intell. 19 (7) (1997) 696–710 . 

32] B. Moghaddam , Principal manifolds and probabilistic subspaces for visual

recognition, Trans. Pattern Anal. Mach. Intell. 24 (6) (2002) 780–788 . 
[33] X. Jiang , B. Mandal , A. Kot , Eigenfeature regularization and extraction in face

recognition, IEEE Trans. Pattern Anal. Mach. Intell. 30 (3) (2008) 383–394 . 
34] P. Shih , C. Liu , Comparative assessment of content-based face image retrieval

in different color spaces, Int. J. Pattern Recognit. Artif. Intell. 19 (07) (2005)
873–893 . 

[35] J.Y. Choi , Y.M. Ro , K.N. Plataniotis , Color face recognition for degraded face im-

ages, IEEE Trans. Systems Man Cybern. B: Cybern. 39 (5) (2009) 1217–1230 . 
36] J. Yang , C. Liu , L. Zhang , Color space normalization: enhancing the discriminat-

ing power of color spaces for face recognition, Pattern Recognit. 43 (4) (2010)
1454–1466 . 

[37] C. Liu , Learning the uncorrelated, independent, and discriminating color spaces
for face recognition, IEEE Trans. Inf. Forensics Secur. 3 (2) (2008) 213–222 . 

38] T. Ahonen , A. Hadid , M. Pietikainen , Face description with local binary pat-
terns: application to face recognition, IEEE Trans. Pattern Anal. Mach. Intell. 28

(12) (2006) 2037–2041 . 

39] O.M. Parkhi , A. Vedaldi , A. Zisserman , Deep face recognition, in: British Ma-
chine Vision Conference, 2015 . 
40] M. Mathias , R. Benenson , M. Pedersoli , L. Van G. , Face detection without bells
and whistles, in: European Conf. Computer Vision, Springer, 2014, pp. 720–735 .

[41] F. Schroff, D. Kalenichenko , J. Philbin , Facenet: a unified embedding for face
recognition and clustering, in: IEEE Conf. Computer Vision and Pattern Recog-

nition, 2015, pp. 815–823 . 
42] Y. Wen , K. Zhang , Z. Li , Y. Qiao , A discriminative feature learning approach

for deep face recognition, in: European Conf. Computer Vision, Springer, 2016,
pp. 499–515 . 

43] K. He , X. Zhang , S. Ren , J. Sun , Delving deep into rectifiers: surpassing hu-

man-level performance on imagenet classification, in: IEEE International Conf.
Computer Vision, 2015, pp. 1026–1034 . 

44] E. Zhou, Z. Cao, Q. Yin, Naive-deep face recognition: touching the limit of LFW
benchmark or not?, arXiv preprint arXiv:1501.04690 (2015). 

45] Z. Zhang , P. Luo , C.C. Loy , X. Tang , Facial landmark detection by deep multi-
-task learning, in: European Conference on Computer Vision, Springer, 2014,

pp. 94–108 . 

46] Y. Jia , E. Shelhamer , J. Donahue , S. Karayev , J. Long , R. Girshick , S. Guadarrama ,
T. Darrell , Caffe: convolutional architecture for fast feature embedding, in: ACM

International Conf. Multimedia, 2014, pp. 675–678 . 
[47] R.O. Duda , P.E. Hart , D.G. Stork , et al. , Pattern classification, 2, Wiley New York,

1973 . 
48] A.K. Jain , R.P.W. Duin , J. Mao , Statistical pattern recognition: a review, IEEE

Trans. Pattern Anal. Mach. Intell. 22 (1) (20 0 0) 4–37 . 

49] D. Pissarenko, Eigenface-based facial recognition, December 1st (2002). 
50] P.J. Phillips , H. Moon , S. Rizvi , P.J. Rauss , et al. , The FERET evaluation method-

ology for face-recognition algorithms, IEEE Trans. Pattern Anal. Mach. Intell. 22
(10) (20 0 0) 1090–1104 . 

[51] X. Jiang , Linear subspace learning-based dimensionality reduction, IEEE Signal
Process. Mag. 28 (2) (2011) 16–26 . 

52] X. Jiang , Asymmetric principal component and discriminant analyses for

pattern classification, IEEE Trans. Pattern Anal. Mach. Intell. 31 (5) (2009)
931–937 . 

53] J. Yang , C. Liu , A discriminant color space method for face representation and
verification on a large-scale database, in: IEEE Intl. Conf. Pattern Recognition,

2008, pp. 1–4 . 
54] C. Liu , H. Wechsler , Robust coding schemes for indexing and retrieval from

large face databases, IEEE Trans. Image Process. 9 (1) (20 0 0) 132–137 . 

55] R. Gross , I. Matthews , J. Cohn , T. Kanade , S. Baker , Multi-pie, Image Vis. Com-
put. 28 (5) (2010) 807–813 . 

56] A. Nefian, Georgia Tech face database, 2013. 
[57] A.M. Martinez , The AR face database, CVC Tech. Rep. 24 (1998) . 

58] G.B. Huang , M. Ramesh , T. Berg , E. Learned-Miller , Labeled faces in the wild: a
database for studying face recognition in unconstrained environments, Tech-

nical Report, Technical Report 07–49, University of Massachusetts, Amherst,

2007 . 
59] P. Zhu , L. Zhang , Q. Hu , S.C. Shiu , Multi-scale patch based collaborative repre-

sentation for face recognition with margin distribution optimization, in: Euro-
pean Conference on Computer Vision, Springer, 2012, pp. 822–835 . 

60] Y. Sun , Y. Chen , X. Wang , X. Tang , Deep learning face representation by joint
identification-verification, in: Advances in Neural Information Processing Sys-

tems, 2014, pp. 1988–1996 . 
[61] X. Zhu , Z. Lei , J. Yan , D. Yi , S.Z. Li , High-fidelity pose and expression normal-

ization for face recognition in the wild, in: IEEE Conf. Computer Vision and

Pattern Recognition (CVPR), 2015 . 

http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0019
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0021
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0022
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0022
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0022
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0022
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0022
http://arxiv.org/abs/1411.7923
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0025
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0025
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0025
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0026
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0026
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0026
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0026
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0027
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0027
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0027
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0028
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0028
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0028
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0028
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0029
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0029
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0029
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0030
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0031
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0031
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0032
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0032
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0032
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0032
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0033
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0035
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0035
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0035
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0035
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0036
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0036
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0037
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0037
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0037
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0037
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0038
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0038
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0038
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0038
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0039
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0039
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0039
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0039
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0039
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0040
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0040
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0040
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0040
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0041
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0041
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0041
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0041
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0041
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0042
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0042
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0042
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0042
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0042
http://arxiv.org/abs/1501.04690
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0043
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0043
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0043
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0043
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0043
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0044
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0045
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0045
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0045
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0045
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0045
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0046
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0046
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0046
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0046
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0047
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0047
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0047
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0047
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0047
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0047
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0048
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0048
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0049
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0049
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0050
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0050
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0050
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0051
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0051
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0051
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0052
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0052
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0052
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0052
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0052
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0052
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0053
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0053
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0054
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0054
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0054
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0054
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0054
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0055
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0055
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0055
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0055
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0055
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0056
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0056
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0056
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0056
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0056
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0057
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0057
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0057
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0057
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0057
http://refhub.elsevier.com/S0165-1684(17)30383-3/sbref0057

	Feature fusion with covariance matrix regularization in face recognition
	1 Introduction
	2 Feature fusion in face recognition
	2.1 Feature fusion schemes
	2.2 Deep learning feature fusion: VGG-Face and ResNetShort

	3 Feature fusion with dimensionality reduction
	3.1 PCA and EFM
	3.2 DR-Cat approach
	3.3 Cat-DR approach

	4 Covariance matrix regularization for feature fusion
	4.1 Covariance matrices in DR-Cat and Cat-DR
	4.2 Overfitting and covariance matrix regularization

	5 Experiments
	5.1 Performance evaluation of ResNetShort features
	5.2 Evaluation of CMR against the level of regularization
	5.3 The optimal value of weights in CMR for different training data
	5.4 Performance comparison of CMR against the best single feature, DR-Cat and Cat-DR

	6 Conclusion
	 Acknowledgments
	 References


