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Abstract

Hierarchical feature learning methods have demonstrated substantial improvements over the con-

ventional hand-designed local features. However, recent approaches mainly perform feature learning in

an unsupervised manner, where subtle differences between different classes can hardly be captured.

In this letter, we propose a discriminative hierarchical feature learning method, which learns a non-

linear transformation to encode discriminative information in the feature space. We apply our features

on two general image classification benchmarks: Caltech 101, STL-10, and a new fine-grained image

classification dataset: NTU Tree-51. The results show that by employing discriminative constraint, our

method consistently improves the performance with 3% to 7% in classification accuracy.

Index Terms

Discriminant analysis, hierarchical feature learning, patch-to-class distance, object recognition.

I. INTRODUCTION

Feature representation is a critical component of a modern visual recognition system. Numerous works

have been done to develop advanced hand-crafted feature descriptors, famous works include SIFT [1],

HOG [2], etc. Although such descriptors can lead to good performance, they might not be able to capture

the essential information hidden in the data. In contrast, feature learning has shown great advantages

in learning data-adaptive image representation. Especially recently, deep learning techniques, such as
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Auto-Encoders [3], and Hierarchical Spatial-Temporal Feature [4], have achieved great success on many

challenging research problems.

However, most existing feature learning methods process in an unsupervised manner, which might

miss discriminative information, and limit the representation capability. In this letter, we propose a

discriminative information encoding method to improve the discriminative power of the learned features.

Specifically, we assume the local image patches contain the class specific information. Based on this

assumption, we assign all the local image patches the same class labels as the images they extracted

from. To get more discriminative local image representation, we aim to learn such a feature space, in

which, the feature patches (transformed image patches) from the same class are close together, while

the feature patches from different classes are separable from each other. However, local patches from

the same class can be highly diverse. Simply forcing all the feature patches from the same class to be

close will bring too much noise. Instead, a feature patch only needs to be close to a small subset of

the patches from the same class. Thus, we introduce the ‘Patch-to-Class’ distance (P2CD) (inspired by

the ‘Image-to-Class’ distance proposed in Naive Bayes Nearest Neighbour [5]) to directly measure the

distance between each feature patch and its nearest neighbour patches from difference classes. As shown

in Figure 1, this framework forces the training feature patches to be close to their corresponding classes

(positive), while to be far away from other classes (negative), which means shortening P2CD(q, NNp)

while elongating P2CD(q, NNn).

In this letter, we build a discriminative hierarchical feature learning framework based on the hierarchical

Reconstruction Independent Component Analysis (RICA) structure [4], [6], [7] (our method can also be

applied in other feature learning frameworks involving learning transformation matrix). As shown in the

orange box on the left of Figure 2, the first layer features are learned through small input image patches

(yellow boxes), then they are convolved with a larger region (red box) to generate the inputs to the

second layer. The final features are the combination of outputs of both layers. Since we focus on learning

discriminative multi-layer local features, we simply follow the Bag-of-Words (BoW) to get global image

representation, and use linear SVM to do classification. Our overall object recognition pipeline is shown

in Figure 2.

II. DISCRIMINATIVE HIERARCHICAL FEATURE LEARNING

We aim to learn a transformation matrix to transform the local image patches from the original image

space to the discriminative feature space. Recently, RICA has shown its power in several challenging

image and video recognition tasks. Thus, we build our discriminative hierarchical feature learning scheme
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Fig. 1. Schematic diagram of our discriminative information encoding scheme. The square in green denotes the training patch;
the circles in red denote patches from the same category (positive); the triangles in blue denote patches from other categories
(negative). This framework aims to reduce P2CD(q, NNp), while elongate P2CD(q, NNn).
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Fig. 2. Illustration of our object recognition pipeline. (Best viewed in color.)

based on the RICA structure, but our method can also be applied in other feature learning frameworks,

such as Convolutional Neural Networks [8].

A. Basic Single Layer RICA Learning Module

The basic single layer RICA learning module [7] consists of a linear auto-encoder term and a non-

linear term, as shown in Figure 2. We set the non-linear function in an ‘energy pooling’ manner. Given

x ∈ R
d as a raw-pixel value training patch with dimensionality d, the RICA 1) uses the matrix W ∈ R

d×d

to linearly transform the input data into Wx; 2) applies energy pooling [9] to represent the subspace
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structure of Wx, and get the non-linear transformed feature vector q ∈ R
d/2:

q =

√
H(Wx)2 (1)

where the square of Wx and the square root of H(Wx)2 are processed element-wisely. H ∈ R
d/2×d

is the subspace pooling matrix used to reduce feature dimension, each row of H selects and sums two

adjacent feature dimensions without overlapping. While W can be learned by minimizing the following

equation: ∑N

j=1

(∥∥xj −W TWxj
∥∥2
2
+ γ

∑d/2

r=1
qjr

)
(2)

in which, xj and qj denote the jth training patch in the image space and feature space respectively, and

N denotes the number of training patches. The first ‘auto-encoder’ term is used to prevent the bases

of W from degenerating. The second ‘sparse’ term is used to ensure the sparsity of the learned feature

descriptors.

B. Discriminative Hierarchical Feature Learning

1) Single Layer Discriminative Feature Learning: The basic learning method described in SectionII-A

can hardly capture discriminative information hidden in different classes. Ideally, for classification, we

expect the learned features to be close to the features from the same class, while to be far away from

the features from other classes. Thus, we propose the following framework to encode discriminative

information.

In our discriminative learning scheme, we aim to maximize the following function for a training feature

patch q:
P (c|q)
P (c̄|q) =

P (q|c) · P (c)

P (q|c̄) · P (c̄)
(3)

where c̄ denotes all the classes except class c, and q is from c.

Assuming the class priors are equal, then the posteriors are equal to the likelihoods, which can be

approximated by applying the Parzen window estimator as described in [5]:

P̂ (q|c) = exp

(
− 1

2σ2
‖q −NNc (q)‖2

)
(4)

in which, NN c (q) is the nearest neighbour belonging to class c of the training patch q in the feature

space. If we further take the log probability and ignore the constant, we can rewrite the right-hand side

of Equation 4 as −‖q−NNc (q)‖2, which can be considered as the negative ‘Patch-to-Class’ distance
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(P2CD). Then Equation 3 can be written in a simplified form:

log
P (q|c)
P (q|c̄) = −‖q−NNc (q)‖2 + ‖q−NNc̄ (q)‖2 (5)

where NN c̄ (q) is the nearest neighbour of q in the feature space, and it is from classes other than

c. Based on our discriminative learning method, we get the representation of the single layer learning

module:

min
W

Eu + ηEs

where, Eu=
∑N

j=1

(∥∥xj−W TWxj
∥∥2
2
+ γ

∑d/2

r=1
qjr

)
Es=

∑N

j=1

(∥∥qj −NNc

(
qj
)∥∥2

2
− ∥∥qj −NNc̄

(
qj
)∥∥2

2

) (6)

where Eu represents the unsupervised term used to enforce low reconstruction error and sparsity, Es

represents the supervised discriminative constraint. γ and η are the tradeoff parameters used to control

the level of sparsity and discriminative power.

We adopt the gradient descent to optimize the object function 6, and the gradients can be computed

as follows:

∂Eu

∂Wmn
=

N∑
j=1

∂
∥∥xj−W TWxj

∥∥2
2

∂Wmn
+ γ

N∑
j=1

d/2∑
r=1

∂qjr
∂Wmn

=
∑N

j=1

∂Eae

∂Wmn
+ γ

∑N

j=1

∑d/2

r=1

∂Esparse

∂Wmn

∂Es

∂Wmn
=

N∑
j=1

∂
∥∥qj−NN c

(
qj
)∥∥2

2

∂Wmn
−

N∑
j=1

∂
∥∥qj−NN c̄

(
qj
)∥∥2

2

∂Wmn

=
∑N

j=1

∂Epos

∂Wmn
−
∑N

j=1

∂Eneg

∂Wmn

where
∂Esparse

∂Wmn
=Hrm

(
Wmxj

)
xjn/

√
Hr(Wxj)2

∂Eae

∂Wmn
=−4Wmxjxjn+Tr

[[
2WTW

(
xj
(
xj
)T)]T(

WTJmn+JnmW
)]

∂Epos

∂Wmn
=2

(
qj −NN c

(
qj
))T (

∂qj

∂Wmn
− ∂NN c

(
qj
)

∂Wmn

)

∂qj

∂Wmn
=Hm

(
Wmxj

)
xjn/

√
H(Wxj)2, (Jmn)kl=δmkδnl

(7)

where ∂Eneg/∂Wmn has the same form as ∂Epos/∂Wmn, ∂NN c

(
qj
)
/∂Wmn and ∂NN c̄

(
qj
)
/∂Wmn

have the same form as ∂qj/∂Wmn . The transformation matrix W can be updated with step size α until
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convergence: W = W − α× (∂Eu/∂W + η∂Es/∂W ).

2) Hierarchical Learning Structure: Though the single layer feature learning module can achieve

good performance, it still has some limitations. For example, it is not able to share statistical information

among different local features, and it cannot extract information from multiple visual levels. To get higher

level visual representations that can not only tolerate non-trivial transformations in small local areas, but

also capture contextual information of the first layer features, we leverage a multi-layer scheme to learn

hierarchical features. In this letter, we adopt a two-layer framework: in the first layer, feature learning is

performed on small image areas (16x16 image patches) to extract the first layer discriminative features;

while in the second layer, higher level image representation is learned from bigger image areas (32x32

image patches) to get the second layer discriminative features.

To get the second layer inputs, convolution is applied on the first layer outputs at multiple grid locations

to get a highly over-complete set of first layer features in the 32x32 image areas. Concatenating these

first layer features will generate a high-dimensional representation, which cannot be efficiently processed.

Thus, PCA is applied for dimension reduction and data whitening, the output of which is the input to

the second layer. We get the final feature descriptors by concatenating the output features of both layers

as shown in Figure 2.

3) Approximation: In each layer, it’s time consuming to search nearest neighbour from a large col-

lection of image patches. Especially in our case, the membership of nearest neighbours NN (q) of each

training patch x change when the feature transformation matrix W updates. For simplification, firstly,

we fix NN (q) and update W until W converges to a suboptimal value. Secondly, we search nearest

neighbours in the learned suboptimal feature space, and renew the membership of nearest neighbours

NN (q). We iterate these two steps for several times. In our experiments, when the number of iterations

increases, the performance slightly increases. For efficiency consideration, we merely apply one iteration.

We initialize W as the matrix learned by the basic learning module without discriminative term, and then

search for NN (q) based on this W , and update W afterwards. Furthermore, to speed up the procedure

of nearest neighbour search, we use FLANN [10], which is a library making use of multiple randomized

k-d trees to achieve fast NN approximation.

III. EXPERIMENTS AND ANALYSIS

We test our discriminative hierarchical feature learning algorithm on two general image classification

benchmarks: Caltech-101, STL-10, and one new fine-grained image classification dataset we collected:

NTU Tree-51. To make a better comparison with other methods, we only use gray-scale images. In layer
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(a) Examples of STL-10

Dypsis madagascariensis Wodyetia bifurcata

Roystonea oleracea Archontophoenix alexandrae
(b) Examples of NTU Tree-51

Fig. 3. (a) Examples from STL-10 dataset. (b) Examples from four different tree species of NTU Tree-51 dataset.

1, we learn on 16x16 patches, and get 128 dimensional first layer features. In layer 2, based on the learned

first layer features, we convolve them within the larger 32x32 patches with a stride of 2. We concatenate

the responses and get 10,368 dimensional data, then PCA is applied to produce 300 dimensional input

data for the second layer. After processing layer 2, we get 150 dimensional second layer features. Since

this letter focuses on local feature learning, we simply employ the most general settings in the BoW

framework. We use Spatial Pyramid Matching [11] to get the global image representation, and linear

SVM as classifier.

To ensure the accuracy of nearest neighbour search, we densely extract patches from the training

images to build the positive and negative patch pool. Additionally, we discard patches extracted from the

low contrast areas for denoising. Specifically, for each class, we densely extract 1000-2000 patches per

training image for the first layer, and 200-400 patches for the second layer to build the positive patch

pool. Meanwhile, we randomly select patches from images belonging to negative categories, and build

the negative patch pool with 10 times the size of the positive pool. Finally, we randomly select 10% of

the patches from each class-specific positive patch pool as the training patches, and learn our features

based on 100,000-500,000 training patches in the first layer, and 30,000-100,000 training patches in the

second layer.

A. Results

Caltech-101 [12] has images from 101 different object classes with high intra-class variance. There are

31 to 800 images in each class. Following the most general settings, we randomly select 30 images per

class for training, and 50 images for testing. We resize all the images to 150x150 pixels. The numerical

results of our method and other algorithms are reported in Table I. We test the hierarchical RICA with
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training patches randomly extracted from training images, and get 66.7% in accuracy as the baseline.

With our discriminative learning method, the accuracy can be improved to 73.0%, which is 6.3% higher

than the baseline.

Algorithm Acc.

SPM [11] 64.6%

Hierarchical RICA [4], [7] 66.7%

NBNN [5] 70.4%

local NBNN [13] 71.9%

LLC [14] 73.4%

Hierarchical SC [15] 74.0%

CRBM [16] 77.8%

Ours (first layer) 66.3%

Ours (two layers) 73.0%
TABLE I

RESULTS ON CALTECH-101

Algorithm Acc.

K-means (Triangle) [17] 51.5%

RICA [7] 52.9%

Hierarchical RICA [4], [7] 54.4%

Sum-Product networks[18] 62.3%

Ours (first layer) 53.3%

Ours (two layers) 56.7%
TABLE II

RESULTS ON STL-10

Algorithm Acc.

SPM [11] 69.6%

Hierarchical RICA [4] 70.9%

LLC [14] 75.3%

Ours (first layer) 74.9%

Ours (two layers) 78.1%
TABLE III

RESULTS ON NTU TREE-51

STL-10 [17] is a newly proposed challenging dataset for deep learning networks, which contains 96x96

pixel images from 10 classes as shown in Figure 3(a). We only use the provided labelled data: 5,000

images for training and 8,000 images for testing. The training sets are predefined in 10 folders, where

each folder contains 1,000 training images. According to the testing protocol, we train our method on

the pre-defined folders, and use the average results as the final testing accuracy. The results are shown

in Table II. As this dataset is very challenging, the accuracy is relatively low, but we can still get 2.3%

improvement compared with the baseline, and achieve 56.7% in accuracy.

NTU Tree-51 is a fine-grained image dataset we collected, it aims to recognize trees at a distance.

All the images were cropped from Google Street View images, which were captured continuously from

a distance on a moving vehicle. This dataset contains 2613 street view tree images in total, which is

composed of images of 51 common tree species in Singapore, and each species contains 30-70 samples.
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This dataset is challenging because of its large intra class variance, and relatively small inter class

variance. Image samples of the dataset are shown in Figure 3(b). We resize all the images to 150x150

pixels, for each species, we use 20 images for training, and the rest for testing. The numerical results are

shown in Table III. With our discriminative term, we can improve the baseline with 7.2% in accuracy.

Furthermore, according to the comparison results of using the first layer only and two layers shown in

Table I, II, and III, with the stacked second layer, the performance can be significantly improved, thus,

the hierarchical structure is crucial.

B. Parametric Analysis

We observe the sparse term γ does not bring much influence to the performance, hence we fix it as

a constant for all the datasets (50 in the first layer, and 1 in the second layer), and focus on η: weight

of the discriminative term in layer 1 and layer 2. In this section, we experimentally investigate how they

may affect the performance.

We vary the value of the regularization parameter η in layer 1 and layer 2 separately. By applying

cross validation, we get the results as shown in Figure 4. The performance numbers do not change

very dramatically. With layer 1 only, as shown in Figure 4(a), when η = 10, our method can bring

5% improvement compared to the single layer RICA. Figure 4(b) shows the comparison result of our

hierarchical discriminative method versus the hierarchical RICA. Here we fix the η in layer 1 as 10. In

layer 2, when η = 0, it corresponds to the result of only applying discriminative learning on layer 1,

and using the basic RICA in layer 2. As the accuracy steadily increase when the value of η increase,

we can get 3% improvement when η = 20. This indicates that our discriminative learning method not

only improves the performance of the first layer, but also further improves the performance of the second

layer. Generally, setting η to 10 for both layers will lead to good performance on all the datasets.

IV. CONCLUSION

In this paper, we proposed a discriminative hierarchical feature learning algorithm, which aims to force

the features from the same class to be close, while features from different classes to be separated. We

propose P2CD to measure the distance between a feature descriptor and a class. By applying a two-layer

discriminative learning method, we obtain a hierarchical feature representation that can not only represent

local discriminative features, but also express multiple visual level features with larger receptive fields by

applying convolution and stacking. On two general object recognition benchmarks and a new fine-grained

image classification dataset, we experimentally show that learning discriminative features significantly
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Fig. 4. Accuracy of our method on Caltech-101 versus the weight of the discriminative term. Green lines represent the accuracy
results of applying the hierarchical RICA, while the red lines indicate the accuracy of our discriminative hierarchical method.

improve the performance. In the future, we will explore information in higher visual levels, and build

hierarchical feature learning framework with more layers.
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