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Abstract

In this paper, we tackle the problem of domain gener-

alization: how to learn a generalized feature representa-

tion for an “unseen” target domain by taking the advantage

of multiple seen source-domain data. We present a nov-

el framework based on adversarial autoencoders to learn

a generalized latent feature representation across domains

for domain generalization. To be specific, we extend ad-

versarial autoencoders by imposing the Maximum Mean

Discrepancy (MMD) measure to align the distributions a-

mong different domains, and matching the aligned distribu-

tion to an arbitrary prior distribution via adversarial fea-

ture learning. In this way, the learned feature represen-

tation is supposed to be universal to the seen source do-

mains because of the MMD regularization, and is expected

to generalize well on the target domain because of the in-

troduction of the prior distribution. We proposed an algo-

rithm to jointly train different components of our proposed

framework. Extensive experiments on various vision tasks

demonstrate that our proposed framework can learn better

generalized features for the unseen target domain compared

with state-of-the-art domain generalization methods.

1. Introduction

In some computer vision applications, it is often the case

that there are only some unlabeled training data in the do-

main of interest (a.k.a. the target domain), while there are

plenty of labeled training data in some related domain(s)

(a.k.a. the source domain(s)). Due to the domain difference,

a model trained with the source-domain data may perform

poorly on the target domain. To address this problem, re-

cently, many studies have been conducted to leverage the

unlabeled data of the target domain given in advance for

adapting the model learned with the source-domain labeled

data to the target domain. These are referred to as domain

adaptation methods [28, 13, 9].

However, in many other scenarios, one may not have any

Figure 1. Object recognition as multi-source domain generaliza-

tion. Given labeled data sampled from several domains, domain

generalization aims to extract universal knowledge across the seen

domains (source domains) to learn a classifier to be used in a pre-

viously “unseen” domain (target domain).

data of the target domain in training, but is still asked to

build a precise model for the “unseen” target domain. This

is a common case in many computer vision tasks. For exam-

ple, in object recognition or action recognition, it is difficult

to collect images with all possible background or videos in

all possible conditions (e.g. capturing angle [30], diverse

reflection [36]) during training. Here, each type of back-

ground or views can be considered as a domain as shown

in Figure 1. Domain generalization has been proposed to

address this problem by leveraging the labeled data from

multiple source domains to learn a universal representation,

which is expected to generalize well for the target domain.

Therefore, a key research issue is how to learn a represen-

tation of good generalization for the unseen target domain

from some related source domains.

Previous works on domain generalization focused on de-

veloping data-driven approaches to learn invariant features

among different source domains. For example, Yang and
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Gao [40] proposed to a model based on Canonical Correla-

tion Analysis (CCA) with the MMD measure as a domain-

distance regularization for domain generalization. Muan-

det et al. [26] proposed the Domain Invariant Componen-

t Analysis (DICA) algorithm to learn an empirical map-

ping based on multiple source-domain data where the dis-

tribution mismatch across domains is minimized while the

conditional function relationship is preserved. In [39], an

exempler-SVM based method was proposed to discover the

latent information shared by the seen source domains. Ghi-

fary et al. [11] proposed a multi-task autoencoder to learn

domain invariant features. Motiian et al. [25] proposed to

minimize the semantic alignment loss as well as the sepa-

ration loss based on deep learning models. Li et al. [19]

proposed a low-rank parameterized CNN model based on

domain shift-robust deep learning methods.

Though some promising results have been shown, previ-

ous data-driven approaches may suffer from the overfitting

issue to the seen source-domain data. In other words, by

focusing on learning a representation via minimizing the d-

ifference between the seen source domains, the learned rep-

resentation may generalize well for all the source domain-

s, but poorly for the unseen target domain. In this work,

we proposed a novel framework for domain generalization,

which aims to learn an universal representation across do-

mains not only by minimizing the difference between the

seen source domains, but also by matching the distribution

of data with the learned representation to a prior distribu-

tion. In a high level, our proposed framework can be con-

sidered as an extension of a recently proposed technique,

adversarial autoencoder (AAE) [23], in the multiple domain

learning setting. We develop an algorithm to jointly mini-

mize loss of data reconstruction, prediction error, and do-

main difference, and match the distribution of the generated

data and the prior distribution via adversarial training.

Note that our work is different from the multi-task au-

toencoder proposed in [11], which exploits labels to con-

struct correspondences, and learns a robust feature repre-

sentation across source domains in a multi-task learning

manner. In our proposed framework, we design a MMD-

based regularization term to minimize the difference be-

tween domains, in which way correspondences of data in-

stances across domains are not required. Moreover, as a

prior distribution is imposed in the learned feature space,

the risk of the learned features being overfitted to the seen

source domains is reduced, and thus the chance of the

learned features generalizing well to the unseen target do-

main is increased. We also develop a supervised learning

strategy for our proposed framework by adding a classifi-

cation layer on top of the learned features. In this way, the

classifier and the universal features are learned simultane-

ously.

2. Related Works

As mentioned at the beginning of the previous section,

both domain adaptation and domain generalization aim to

learn a precise classifier to be used for the target domain by

leveraging labeled data from the source domain(s). The d-

ifference between them is that for domain adaptation, some

unlabeled data and even a few labeled data from the target

domain are utilized to capture properties of the target do-

main for model adaptation [27, 9, 33, 4, 13, 22, 35, 21].

While numerous approaches have been proposed for do-

main adaptation, less attention has been raised for domain

generalization. Some representative works have been re-

viewed in the previous section.

Our work is also related to Generative Adversarial Net-

work (GAN) [14] which has been explored for generative

tasks. In GAN, there are two types of networks: A gener-

ative model G that aims to capture the distribution of the

training data for data generation, and a discriminative mod-

el D that aims to distinguish between the instances drawn

from G and the original data sampled from the training

dataset. The generative model G and the discriminative

model D are jointly trained in a competitive fashion: 1)

Train D to distinguish the true instances from the fake in-

stances generated by G. 2) Train G to fool D with its gener-

ated instances. Recently, many GAN-style algorithms have

been proposed. For example, Li et al. [20] proposed a gen-

erative model, where MMD is employed to match the hid-

den representations generated from training data and ran-

dom noise. Makhzani et al. [23] proposed adversarial au-

toencoder (AAE) to train the encoder and the decoder using

an adversarial learning strategy.

Some adversarial networks have been developed for do-

main adaptation or domain generation. For instance, in [10],

a domain classifier with binary labels is introduced to dis-

tinguish the source domain from the target domain. The

predictions of the domain classifier are encouraged to be

close to a uniform distribution. The gradient reversal al-

gorithm (ReverseGrad) is also introduced for optimization.

Ghifary et al. [12] proposed an autoencoder based frame-

work for domain adaptation by simultaneously minimizing

the reconstruction loss of the autoencoder and the classi-

fication error. More recently, Tzeng et al. [34] proposed a

generative adversarial learning based framework for domain

adaptation. In our work, we borrow the idea of adversarial

training to impose a prior distribution in the feature space to

be learned, such that the learned features could generalize

well to the “unseen” target domain.

3. The Proposed Methodology

A basic assumption behind domain generalization is that

there exists a feature space underlying the seen multiple

source domains and the unseen target domain, on which a
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prediction model learned with training data from the seen

source domains can generalize well on the unseen target

domain. Such a feature space for domain generalization is

expected to have the following properties:

• The feature space should be domain-invariant in terms

of data distributions. This is because in the feature s-

pace, all the mapped labeled data from the source do-

mains are used to train a prediction model for the un-

seen target domain. If the data distributions of differ-

ent domains in the feature space are still different, the

generalization of the prediction model would be poor

for the target domain [28].

• The feature space should capture discriminative infor-

mation to class labels, which would be helpful to learn

a precise prediction model for the target domain.

To enable the learned feature space to have the first

aforementioned property, we extend AAE [23], which

is a recently proposed probabilistic autoencoder, to the

multi-domain setting for learning cross-domain invariant

features using MMD in an adversarial learning manner.

Specially, we aim to learn a feature space underlying all

the seen source domains by minimizing the distribution

variance among them based on the MMD distance, and

by introducing a prior distribution to regularize the distri-

bution of the mapped source domains data in the feature

space using an adversarial training procedure. With the

introduced prior distribution, we expect that the learned

feature space is not overfitted to the seen source domains

data, and thus could generalize better to the unseen target

domain data. In the sequel, we term our proposed model

by MMD-based adversarial autoencoder (MMD-AAE). To

make the learned feature space discriminative to labels,

we extend MMD-AAE to the supervised learning setting

by introducing a classification layer to incorporate label

information into training. In this way, the feature space and

the final classifier are learned simultaneously. We present

our proposed model in detail in the following sections.

Notation: Suppose there are K seen source domains in to-

tal. We denote by Xl = [xl1 , ...,xlnl
]
⊤

the inputs for do-

main l∈{1, ...,K}, where xli ∈R
d×1 and nl is the number

of examples of the domain l, and by Yl = [yl1 , ...,ylnl
]
⊤

the corresponding labels, where yli ∈ R
m×1 is an one-hot

encoding vector and m is the number of classes.

3.1. Adversarial Autoencoder

Adversarial autoencoder (AAE) [23] is a probabilistic

autoencoder, which aims to perform variational inference

by matching the aggregated posterior of the hidden codes

with an arbitrary prior distribution using an adversarial

training procedure. Specially, let x be the input and h be

the hidden code of the autoencoder. Denote by q(h|x) and

q(x|h) an encoding distribution and the decoding distribu-

tion, respectively. Then the aggregated posterior distribu-

tion of q(h) on the hidden codes can be computed as

q(h) =

∫

x

q(h|x)p(x)dx,

where p(x) is the marginal distribution of inputs. Let p(h)
be the prior distribution one wants to impose on the codes.

AAE borrows the idea of GAN to minimize the reconstruc-

tion error for the autoencoder, and meanwhile guide q(h)
to match p(h) through attaching an adversarial network on

top of the hidden codes of the autoencoder.

3.2. MMD­based Adversarial Autoencoder

In this section, we describe how our proposed MMD-

AAE extends AAE for domain generation. The architecture

of MMD-AAE is shown in Figure 2. In MMD-AAE, we

have an encoder Q(x) to map inputs to hidden codes and

a decoder P (h) to recover inputs from the hidden codes.

The pair of encoder and decoder are shared by all the do-

mains including the target domain in the prediction phrase.

The reconstruction error of the autoencoder over all the seen

source domains is defined as

Lae =

K
∑

l=1

‖X̂l −Xl‖22, (1)

where X̂l = P (Hl) and Hl = Q(Xl). To make

hidden codes invariant underlying the seen source do-

mains, we introduce an MMD-based regularization term

Rmmd(H1, ...,HK) on the hidden codes Hl’s among d-

ifferent source domains. The form of Rmmd is specified

in Section 3.3. Though the MMD-based regularization term

can help learning hidden codes, projected onto which the d-

ifference among the source domains could be reduced, there

is a risk that the “invariant” hidden codes are overfitted to

the source domains, and thus may generalize poorly to the

target domain. Therefore, motivated by AAE, we impose

a prior distribution p(h) to regularize the learned hidden

codes by matching q(Q(x)) to p(h) through designing an

adversarial network. Here, the generator of the adversarial

network is the encoder Q(·) of the autoencoder.

Following GAN [14], MMD-AAE can be written as the

following the minimax optimization problem,

min
Q,P

max
D

Lae + λ1Rmmd + λ2Jgan, (2)

where

Jgan = Eh∼p(h)[logD(h)]+Ex∼p(x)[log(1−D(Q(x)))],

and D(·) is the discriminator to tell apart the true hidden

codes sampled based on the prior from the generated codes
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Figure 2. An overview of our proposed framework (MMD-AAE) for domain generalization. We first extract feature (either handcrafted

feature or deep learning based feature) based on the given image. Next, we perform domain generalization by aligning the distribution of

hidden representation based on Maximum Mean Discrepancy (MMD) and match the hidden representation with a Laplace prior with an

adversarial sub-network. We further employ a classification sub-network to preserve the category-specific information of training samples.

by Q(x). Note that x ∈ ⋃K
l=1{xli}nl

i=1, and when x ∈
{xli}nl

i=1, p(x) = pl(x). The trade-off positive parameters

λ1 and λ2 are predefined by users.

Regarding the prior distribution, in theory, it can be an

arbitrary distribution. In this work, we adopt the Laplace

distribution h ∼ Laplace(η), where η is the hyperparam-

eter. As proven in [14], minimizing the generator Q is

equivalent to minimizing the Jensen-Shannon divergence

JSD(p(h)||p(Q(x))). We generate the Laplace distribution

by multiplying the Normal distribution by the square root

of exponential distribution with the hyperparameter being

1, which yields η = 1√
2

. To show the effectiveness of the

Laplace prior distribution, we also conduct comparison ex-

periments by using other prior distributions, such as the

Gaussian distribution and the Uniform distribution.

3.3. Multi­domain MMD­based Regularization

Now, we specify the form of the MMD-based regular-

ization term used in MMD-AAE. Given hidden codes from

two domains Hl and Ht drawn from unknown probabili-

ty distributions Pl and Pt, respectively. The technique of

kernel embedding [31] for representing an arbitrary distri-

bution is to introduce a mean map operation µ(·) to map

instances to a reproducing kernel Hilbert space (RKHS) H,

and to compute their mean in the RKHS as follows,

µ
P
:= µ(P) = Ex∼P[φ(x)] = Ex∼P[k(x, ·)], (3)

where φ : Rd → H is a feature map, and k(·, ·) is the kernel

function induced by φ(·). If the condition Ex∼P(k(x,x)) <

∞ is satisfied, then µ
P

is also an element in H. It has been

proven that if the kernel k(·, ·) is characteristic, then the

mapping µ : P → H is injective [32]. The injectivity indi-

cates an arbitrary probability distribution P is uniquely rep-

resented by an element in a RKHS through the mean map.

In this work, we use the RBF kernel, which is a well-known

characteristic kernel, i.e., k(x,x′) = exp(− 1
2σ‖x − x′‖2),

where σ is the bandwidth parameter. Based on the MMD

theory [15], the distance between the domains l and t (or Pl

and Pt) can be measured by

MMD(Hl,Ht) = ‖µPl
− µPt

‖H. (4)

We now extend the MMD distance to the multi-domain

setting. First, we have the following theorem.

Theorem 1. [26] Denote by P̄ and Pi the probability

across the K domains and the probability of domain i ∈
{1, ...,K}, respectively, and by µP̄ and µPi

the mean map

across all domains and the mean map for domain i, respec-

tively. The distribution variance 1
K

∑K
i=1 ‖µPi

− µP̄‖ = 0
if and only if P1 = P2 = ... = PK .

Based on the theorem, we have the following corollary.

Corollary 1. The upper bound of the distribution variance

can be written as

1

K2

∑

1≤i,j≤K

MMD(Hi,Hj). (5)
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Proof. We rewrite the mean map µP̄ as 1
K

∑

j µPj
, then the

distribution variance can be reformulated as

1

K

K
∑

i=1

‖µPi
− µP̄‖H =

1

K

K
∑

i=1

∥

∥

∥

∥

∥

∥

µPi
− 1

K

K
∑

j=1

µPj

∥

∥

∥

∥

∥

∥

H

=
1

K

K
∑

i=1

∥

∥

∥

∥

∥

∥

K
∑

j=1

1

K
(µPi

− µPj
)

∥

∥

∥

∥

∥

∥

H

≤ 1

K2

∑

1≤i,j≤K

MMD(Hi,Hj).

This completes the proof.

Therefore, we propose to minimize the upper bound of

the distribution variance among domains, and define the

regularization term Rmmd on hidden codes as

Rmmd(H1, ...,HK) =
1

K2

∑

1≤i,j≤K

MMD(Hi,Hj).

(6)

By minimizing the upper bound derived above, we expect

that the learned hidden codes generalize well across all the

source domains.

In practice, one can use an unbiased empirical estima-

tion to approximate the mean map as µ̂
P
= 1

n

∑n
i=1 φ(hi).

Therefore, an unbiased empirical estimation of MMD be-

tween two domains l and t can be written as follows,

MMD(Hl,Ht)
2 =

∥

∥

∥

∥

∥

∥

1

nl

nl
∑

i=1

φ(hli)−
1

nt

nt
∑

j=1

φ(htj )

∥

∥

∥

∥

∥

∥

2

H

=
1

n2
l

nl
∑

i=1

nl
∑

i′=1

k(hli ,hl′
i
) +

1

n2
t

nt
∑

j=1

nt
∑

j′=1

k(htj ,ht′
j
)

− 2

nlnt

nl
∑

i=1

nt
∑

j=1

k(hli ,htj ), (7)

where k(hj ,h
′
j) = φ(hi)φ(h

′
i)

⊤ is the kernel function in-

duced by φ(·).
3.4. Supervised MMD­AAE & Training Procedure

To incorporate label information into the learning of hid-

den codes in MMD-AAE, one can simply attach a classi-

fication layer on top of the hidden layer. As shown in Fig-

ure 2, we simply add two fully connected layers between the

hidden codes and the outputs. The label information is in-

corporated into the hidden codes through back-propagation

from the prediction errors to hidden codes. In this work, we

adopt cross-entropy loss to measure prediction errors. Ac-

cordingly, the objective of unsupervised MMD-AAE in (2)

is revised as follows,

min
C,Q,P

max
D

Lerr + λ0Lae + λ1Rmmd + λ2Jgan, (8)

where Lerr is the loss on predictions, and C denotes the

parameters of a classifier build on the hidden codes with the

labeled data from all the source domains.

Note that the learning procedure of MMD-AAE is sim-

ilar to that in AAE [23]. The difference is that during the

minimization step, AAE only aims to minimize the recon-

struction loss while MMD-AAE aims to jointly minimize

the classification loss, reconstruction loss as well as the M-

MD loss. Specifically, MMD-AAE contains two training

phrases: 1) Train the discriminator to distinguish the hid-

den codes sampled from the prior distribution and the ones

generated by the encoder, i.e., to learn D by maximizing

the objective (8). 2) Train the autoencoder to update the

encoder and the decoder by minimizing the reconstruction

error of inputs, the distance between domains, and classi-

fication error, i.e., to learn Q, P and C by minimizing the

objective (8). The overall algorithm of MMD-AAE is de-

scribed in Algorithm 1.

Algorithm 1 Supervised MMD-AAE.

Input: X = {X1, ...,XK}, Y = {Y1, ...,YK}, initial-

ized parameters Q, P , C, and D.

Output: Learned parameters Q∗, P ∗ ,D∗, and C∗.

while Stopping criterion is not met do

1: Sample a minibatch Xd and Yd from X and Y,

respectively.

2: Sample h from the Laplace distribution.

3: Compute the gradient of (8) w.r.t. D on Xd.

4: Take a gradient step to update D to maximize the

objective (8).

5: Compute the gradient of (8) w.r.t. Q, P , C on Xd,

respectively.

6: Take a gradient step to update Q, P , C to minimize

the objective (8), alternatingly.

end while

3.5. Implementation Details

3.5.1 MMD-based Regularization

As stated in [16], the choice of kernel can have significan-

t impact on the MMD distance. In [16], kernel selection is

proposed to be done by minimizing the Type II error defined

by maxk∈K
d2

k

σ2

k

, where K is a set of kernels to be chosen, σk

is the estimation variance by selecting the k-th kernel, and

dk is the MMD distance using the k-th kernel. More de-

tails can be found in [16]. This kernel selection strategy

was adopted in [21] by formulating the whole objective as a

minimax optimization problem. However, on one hand, as

our objective is already a minimax optimization problem,

formulating another minimax optimization to determine k-

ernel parameters may make the resultant optimization prob-

lem intractable. On the other hand, we find that choosing a
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simple value for the kernel bandwidth, such as σ = 1, 5, 10,

leads to good performance. Therefore, in this work, we sim-

ply use a mixture kernel by averaging the RBF kernels with

the bandwidth σ = 1, 5, 10. Note that as shown in [20],

MMD(Hi,Hj) (the square root of MMD(Hi,Hj)
2 defined

in (7)) is differentiable when the kernel is differentiable.

3.5.2 Adversarial Network

We find that directly optimizing the log-likelihood term of

Jgan in (2) may also cause the non-convergence issue of

optimization. Therefore, we borrow the idea from [24] to

replace the log-likelihood term in Jgan by the least-squared

term as follows,

Jgan = Eh∼p(h)[D(h)2] + Ex∼p(x)[(1−D(Q(x)))2] (9)

As shown in [24], minimizing (9) is equivalent to minimiz-

ing Pearson-χ2 divergence.

3.6. Further Discussion

As reviewed in Section 2, there exist many deep learn-

ing based domain adaptation methods that use either MMD

minimization [21, 22] or adversarial training [34] to align

the source-domain distribution(s) to the target domain dis-

tribution. However, most of them cannot be directly ap-

plied to domain generalization problems because the target

domain data is not available during training. Our proposed

method aims to align distributions of the seen source do-

mains by jointly imposing the multi-domain MMD distance

as well as adversarial loss to a prior distribution. Our moti-

vations are twofolds: 1) We target at extracting an invariant

manifold structure which is shared across the seen source

domains. Thus, the distribution between each pair of two

source domains should be minimized, which can be done

by minimizing the upper bound of domain variance intro-

duced in [26]. 2) Since the target domain is “unseen”, we

adopt adversarial learning [5] to impose a prior distribution

to regularize manifold learning such that the learned mani-

fold can generalize well to the target domain.

4. Experiments

In this section, we conduct experiments on several real-

world vision recognition problems to evaluate the effective-

ness of our proposed method for domain generalization. We

first use the popular benchmark dataset MNIST [18] with

rotations for digit recognition. We then evaluate the perfor-

mance on other vision problems, such as object recognition

on Caltech [8], PASCAL VOC2007 [6], LabelMe [29] and

SUN09 [2], as well as the action recognition based on dif-

ferent angles on IXMAS [38].

4.1. Baseline Methods

We compare our proposed MMD-AAE with the follow-

ing baseline methods for domain generalization in terms

of classification accuracy. To avoid confusion, in this sec-

tion we use MMD-AAE to denote the supervised version of

MMD-AAE, and MMD-AAEu to denote the unsupervised

version. Note that for MMD-AAEu, a classifier is trained

separately after the hidden codes are learned.

• SVM: We adopt a linear SVM to train a classifier by di-

rectly using the source-domain labeled instances. The

parameter C is tuned by cross validation on source do-

mains.

• DAE: We adopt a single-layer denoising autoencoder

to learn the hidden representation of each samples, and

train a linear SVM with the new representation.

• DICA [26]: We apply Domain-Invariant Component

Analysis (DICA) with the RBF kernel to learn features,

and train a linear SVM with new features.

• LRE-SVM [39]: We train an exemplar-SVM with a

low-rank regularization. The hyper-parameter setting

is determined by five-fold cross validation on source

domains.

• D-MTAE [11]: We apply the denoising multi-task au-

toencoder to learn robust features, and train a linear

SVM with new features. We set the hyper-parameters

following [11]. To make a fair comparison, we set

the dimension of hidden layer to be 500 for handwrit-

ten digit recognition, and 2,000 for object and action

recognition.

• CCSA [25]: We consider the network proposed in [25]

as another baseline. The network setting is the same

as [25] with two fully connected layers of output size

1,024 and 128, respectively, and another fully connect-

ed layer with softmax activation for classification.

4.2. Network Structure

In MMD-AAE, regarding the autoencoder sub-network,

we only use a single hidden layer as [11], and feed the hid-

den layer as an input for both the adversarial sub-network

and the classification sub-network, both of which consist

of two fully connected layers (one with the same size as

hidden layer, one with the size of number of categories

and 1 for classification and adversarial learning task respec-

tively). We adopt ReLU as the non-linear activation unit

for the classification sub-network and the adversarial sub-

networks. The whole network is trained using the Adam

algorithm [17] in a minibatch manner by sampling 100 in-

stances from each source domain (for action recognition,

we use all training instances since there are only 91 in-

stances in each domain).
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Table 1. Performance on handwritten digit recognition. The best performance is highlighted in boldface.

Source Target SVM DAE DICA LRE-SVM D-MTAE CCSA MMD-AAE

M15, M30, M45, M60, M75 M0 52.4 76.9 70.3 75.2 82.5 84.6 83.7

M0, M30, M45, M60, M75 M15 74.1 93.2 88.9 86.8 96.3 95.6 96.9

M0, M15, M45, M60, M75 M30 71.4 91.3 90.4 84.4 93.4 94.6 95.7

M0, M15, M30, M60, M75 M45 61.4 81.1 80.1 75.8 78.6 82.9 85.2

M0, M15, M30, M45, M75 M60 67.4 92.8 88.5 86.0 94.2 94.8 95.9

M0, M15, M30, M45, M60 M75 55.4 76.5 71.3 72.3 80.5 82.1 81.2

Average 63.7 85.3 81.6 80.1 87.6 89.1 89.8

Table 2. Performance on object recognition.
Source Target SVM DAE DICA LRE-SVM D-MTAE CCSA MMD-AAE

L,C,S V 58.9 62.0 63.7 60.6 63.9 67.1 67.7

V,C,S L 52.5 59.2 58.2 59.7 60.1 62.1 62.6

V,L,S C 77.7 90.2 79.7 88.1 89.1 92.3 94.4

V,L,C S 49.1 57.4 61.0 54.9 61.3 59.1 64.4

Average 59.6 67.2 65.7 65.8 68.6 70.2 72.3

4.3. Experiments on Handwritten Digit Recognition

For handwritten digit recognition, we follow the setting

designed in [11] by creating digit images in six different an-

gles. To be more specific, we adopt the MNIST dataset and

randomly chose 1,000 digit images of ten classes (each class

contains 100 images) to represent the basic view. We denote

the digit images with 0◦ by M0, and then rotate the digit im-

ages in a counter-clock wise direction by 15◦,30◦,45◦,60◦

and 75◦ which are denoted by M15, M30, M45, M60 and

M75, respectively. The tanh activation and linear activa-

tion functions are used for the encoder Q and decoder P .

The vectorized raw pixels are treated as the feature and we

then normalize the pixels in the range of [0, 1] as the input

for the autoencoder. We apply the leave-one-domain-out

strategy to construct domain generalization tasks. We re-

peat the experiments for 30 times and report the averaged

classification accuracy. The learning rate of our method is

set to be 0.01. The parameters of the objective are set as

λ0 = 1, λ1 =2.5e3, λ2 = 0.1. The hidden layer size is set

as 500 as [11]. The overall comparison results with baseline

methods are shown in Table 1.

From the table, we observe that MMD-AAE achieves the

best performance with a clear margin on 4 out of 6 domain

generalization tasks (M15, M30, M45, M60 as the target do-

main) and competitive performance on the remaining two

with the baseline methods. An interesting observation is

that MMD-AAE achieves much better performance com-

pared with DICA [26] which also uses MMD for domain

generalization. There may be two reasons. 1) MMD-AAE

is deep learning based model, which can learn powerful

features and the final classification jointly in an end-to-end

manner. 2) In MMD-AAE, a prior distribution is imposed

in the hidden feature space through adversarial training in

order to avoid overfitting to the seen source domains data,

and thus to improve the generalization ability for the tar-

get domain. We further present the experiments on the ef-

fectiveness of the MMD regularization component and the

adversarial component in Section 4.5.

Table 3. Performance on action recognition.
Source Target SVM DAE DICA LRE-SVM D-MTAE CCSA MMD-AAE

0,1,2,3 4 59.3 53.9 61.5 75.8 78.0 75.8 79.1

0,1,2,4 3 90.1 90.1 72.5 84.5 91.2 92.3 94.5

0,1,3,4 2 90.1 87.9 74.7 86.9 92.3 94.5 95.6

0,2,3,4 1 78.0 85.8 67.0 83.4 90.1 91.2 93.4

1,2,3,4 0 83.5 91.2 71.4 92.3 93.4 96.7 96.7

Average 80.2 81.8 69.4 84.6 87.0 90.1 91.9

Table 4. Impact of different components on performance.

Source vs Target L,C,S vs V V,C,S vs L V,L,S vs C V,L,C vs S

No Prior 66.1 62.0 94.0 63.6

No MMD 65.9 60.6 94.3 63.8

MMD-AAEu 67.1 60.9 91.4 63.5

MMD-AAE 67.7 62.6 94.4 64.4

4.4. Experiments on Object and Action Recognition

For object recognition, we use the VLCS dataset [7],

which contains 5 shared object categories (bird, car, chair,

dog and person) from PASCAL VOC2007 (V) [6], LabelMe

(L) [29], Caltech-101 (C) [8] and SUN09 (S) [2]. We ran-

domly split data of each domain into a training set (70%)

and a test set (30%) and adopt the leave-one-domain-out

strategy as suggested in [11, 25] and report the average re-

sults based on 20 trails. We adopt the DeCAF model [3] by

extracting the FC6 features (DeCAF6) for evaluation.

For action recognition, we use the IXMAS dataset [38],

which contains videos of 11 actions in 5 different views

(camera 0, 1, ..., 4). We follow the setting of previous

work [39] to keep the first 5 actions performed by Alba,

Andreas, Daniel, Hedlena, Julien and Nicolas and exclude

the irregular actions. We use the same setting as [39] by us-

ing encoded Dense trajectories features [37] as feature. We

also adopt the leave-one-domain-out strategy to generate 4

domain generalization tasks.

We use linear activation for both encoder and decoder,

and set the learning rate to be 10−4. The hidden layer size

is set as 2,000 [11]. We set λ1 = 2, λ2 = 0.1 for both

tasks, and λ0 = 0.1 for object recognition and λ0 = 5 for

action recognition. The overall comparison results on ob-

ject recognition and action recognition are shown in Table 2

and Table 3, respectively. From the results, we get simi-

lar observations as the digit recognition tasks. MMD-AAE

achieves consistently good performance on all tasks, which

shows the robustness of MMD-AAE.
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4.5. Impact on Different Components

In this section, we further conduct experiments on objec-

t recognition to understand the impact of different compo-

nents of MMD-AAE on the final classification performance.

Experimental results are shown in Table 4, where “No Pri-

or” means that we remove the adversarial sub-network from

the MMD-AAE architecture, i.e., remove the term Jgan
from the objective in (8), which results in a minimization

problem w.r.t. P , Q and C, “No MMD” means that we

remove the MMD regularization term Rmmd from the ob-

jective in (8), and MMD-AAEu means that we remove the

classification layer from the MMD-AAE architecture, i.e.,

using the objective in (2) instead of (8). From the table, we

observe that removing the MMD regularization component,

the prior distribution component, or classification compo-

nent causes performance drop on all the 4 tasks. This ver-

ifies our motivations: 1) Using MMD-based regularization

is helpful to reduce difference between the seen source do-

mains, and thus able to learn invariant features across source

domains. 2) Imposing a prior distribution in the feature s-

pace could make the learned features generalize better to

an unseen domain. 3) Incorporating label information into

training is able to learn more discriminative features which

are useful for classification.

4.6. Impact on Different Priors

Finally, we also conduct experiments to compare the im-

pact of imposing different prior distributions in the feature

space. Experimental results on object recognition are shown

in Table 5, where we compare the Laplace prior, which is

used in our previous experiments, with Gaussian distribu-

tions (N ) and the Uniform distributions (U ) of differen-

t parameters. From the table, we observe that by impos-

ing Laplace distribution as the prior outperforms the Gaus-

sian distribution and the Uniform distribution with a clear

margin, which verify our motivation that by imposing the

Laplace distribution as a prior, it is able to learn a sparse

hidden representation which may boost the generalization

ability of the learned features [1].

Table 5. Performance with different prior distributions.

Source vs Target L,C,S vs V V,C,S vs L V,L,S vs C V,L,C vs S

N ∼ (0, 0.1 × I) 65.9 60.6 93.4 63.3

N ∼ (0, I) 65.8 60.5 93.6 63.0

N ∼ (0, 10 × I) 65.1 58.4 92.7 61.4

U ∼ [−0.1, 0.1] 65.2 60.6 93.3 62.3

U ∼ [−1, 1] 65.4 59.9 93.2 62.1

U ∼ [−10, 10] 65.0 58.3 91.9 59.9

Laplace(1/
√
2) 67.7 62.6 94.4 64.4

To further study the impact of the prior distribution, We

conduct more experiments on reducing the the bandwidth of

Gaussian prior to “approximate” sparsity constraint with the

parameter 10−2, 10−3, 10−4, 10−5. When the bandwidth is

smaller, the coefficient becomes more centered to “0”. We

Table 6. Performance with different parameters.

Source vs Target L,C,S vs V V,C,S vs L V,L,S vs C V,L,C vs S

N (0, 10−5 × I) 66.4 61.4 92.1 63.0

N (0, 10−4 × I) 67.5 62.8 93.3 64.4

N (0, 10−3 × I) 67.8 62.6 94.5 63.6

N (0, 10−2 × I) 66.9 61.3 93.5 63.5

Laplace(10−4) 65.8 61.6 90.5 63.0

Laplace(10−3) 67.1 61.6 92.6 63.4

Laplace(10−2) 68.2 63.4 94.8 64.5

Laplace(10−1) 68.8 63.5 95.6 65.0

Laplace(1/
√
2) 67.7 62.6 94.4 64.4

also conduct ablation study by using Laplace prior with d-

ifferent bandwidth parameters as 10−4, 10−3, 10−2, 10−1.

The results are shown in Table 6.

As can be seen from Table 6, regarding using Gaussian

prior, our model obtains better performance when band-

width is relatively small. For example, using the Gaus-

sian prior with the bandwidth of 10−3 achieves comparable

performance as using the Laplace prior with bandwidth of

(1/
√
2) reported in Table 2. From the table, we also find

that by using smaller bandwidth for the Laplace prior, the

performance of our model can be further boosted. However,

if the bandwidth is very small, e.g., 10−4, then the perfor-

mance will drop. The reason may be that, the distribution

suffer from degeneration to the dirac function which may

not be able to extract representative information. In conclu-

sion, the priors which can lead to sparse representation are

good for domain generalization tasks.

5. Conclusion

In this paper, we propose a novel framework for do-

main generalization, denoted by MMD-AAE. The main

idea is to learn a feature representation by jointly opti-

mization a multi-domain autoencoder regularized by the M-

MD distance, an discriminator and a classifier in an adver-

sarial training manner. Extensive experimental results on

handwritten digit recognition, object recognition and action

recognition demonstrate that our proposed MMD-AAE is

able to learn domain-invariant features, which lead to state-

of-the-art performance for domain generalization.
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