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Abstract. Gesture recognition and 3D hand pose estimation are two
highly correlated tasks, yet they are often handled separately. In this pa-
per, we present a novel collaborative learning network for joint gesture
recognition and 3D hand pose estimation. The proposed network exploits
joint-aware features that are crucial for both tasks, with which gesture
recognition and 3D hand pose estimation boost each other to learn highly
discriminative features. In addition, a novel multi-order multi-stream fea-
ture analysis method is introduced which learns posture and multi-order
motion information from the intermediate feature maps of videos effec-
tively and efficiently. Due to the exploitation of joint-aware features in
common, the proposed technique is capable of learning gesture recogni-
tion and 3D hand pose estimation even when only gesture or pose labels
are available, and this enables weakly supervised network learning with
much reduced data labeling efforts. Extensive experiments show that our
proposed method achieves superior gesture recognition and 3D hand pose
estimation performance as compared with the state-of-the-art.

Keywords: Gesture Recognition · 3D Hand Pose Estimation · Multi-
Order Multi-Stream Feature Analysis · Slow-Fast Feature Analysis ·
Multi-Scale Relation

1 Introduction

Gesture recognition and 3D hand pose estimation are both challenging and fast-
growing research topics which have received contiguous attention recently due
to their wide range of applications in human-computer interaction, robotics,
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Fig. 1. Overview of our proposed network architecture for gesture recognition and
3D hand pose estimation from videos. The input is video frames, and the output is
predicted gesture class of the video and 3D hand joint locations of each video frame.
The process flow of our network can be divided into 5 stages: (1) Generating J . (2)
Generating P and Predicting 3D Hand Pose. (3) Aggregating input to Gesture Sub-
Network. (4) Generating G and Recognizing Gesture Class. (5) Aggregating input to
Pose Sub-Network. (As shown by the (1) - (5) in this Figure). Stage (2) to (5) are
operated in an iterative way (details are introduced in Sec. 3.1).

virtual reality, augmented reality, etc. The two tasks are closely correlated as they
both leverage heavily on joint-aware features, i.e. features related to the hand
joints [19, 40]. On the other hand, the two tasks are often tackled separately by
dedicated systems [1, 4, 9, 23, 24] . Though some recent efforts [13, 22, 29] attempt
to handle the two tasks at one go, it does not consider to iteratively gain benefits
from mutual learning of them.

In this paper, we propose to perform gesture recognition and 3D hand pose
estimation mutually. We design a novel collaborative learning strategy to exploit
joint-aware features that are crucial for both tasks, with which gesture recogni-
tion and 3D hand pose estimation can learn to boost each other progressively,
as illustrated in Fig. 1.

Inspired by the successes [28, 34] that use motion information for human
activity recognition in videos, we exploit motion information for better gesture
recognition by focusing more on joint-aware features. Specifically, we distinguish
slowly and fast-moving hand joints and exploit such motion information in the
intermediate network layers to learn enhanced and enriched joint-aware features.
Beyond that, we propose a multi-order multi-stream feature analysis module
that exploits more discriminative and representative joint motion information
according to the intermediate joint-aware features.

Additionally, annotating 3D hand poses is often very laborious and time-
consuming. To address this issue, we propose a weakly supervised 3D pose esti-
mation technique that can learn accurate 3D pose estimation models from the
gesture labels which are widely available in many video data. We observe that the
weakly supervised learning improve the 3D pose estimation significantly when
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only a few samples with 3D pose annotations are included, largely because the
exploited joint-aware features that are useful for both gesture recognition and
3D hand pose estimation tasks. At the other end, the weakly supervised learning
can also learn accurate gesture estimation models from hand image sequences
with 3D pose annotations with similar reasons.

The contributions of this work can be summarized from four aspects. First, we
propose a novel collaborative learning network that leverage joint-aware features
for both gesture recognition and 3D hand pose estimation simultaneously. To the
best of our knowledge, this is the first network that exploits and optimizes the
joint-aware features for both gesture recognition and 3D hand pose estimation.
Second, it designs a multi-order feature analysis module that employs a novel
slow-fast feature analysis scheme to learn joint-aware motion features which im-
proves the gesture recognition greatly. Third, it designs a multi-scale relation
module to learn hierarchical hand structure relations at multiple scales which
enhances the performance of gesture recognition clearly. Fourth, we propose a
weakly supervised learning scheme that is capable of leveraging hand pose (or
gesture) annotations to learn powerful gesture recognition (or pose estimation)
model. The weakly supervised learning greatly relieves the data annotation bur-
den especially considering the very limited annotated 3D pose data and the wide
availability of annotated hand gesture data.

2 Related Work

Gesture and action recognition. In the early stage, many gesture and action
recognition methods were developed based on handcrafted features [14, 15, 32,
33]. With the advance of deep learning, Convolutional neural networks (CNNs)
[7, 28, 30, 31, 34, 36, 38, 39] have been applied to gesture recognition and action
recognition. Simonyan and Zisserman [28] proposed a two-stream architecture,
where one stream operates on RGB frames, and the other on optical flow. Many
works follow and extend their framework [7, 30, 36]. They all use the optical flow
as the motion information. Wang et al. [34] built a new motion representation:
RGB difference, which stacks the differences between consecutive frames, to save
the time of optical flow extraction. The calculation process of optimal flow [28,
34] and RGB difference [34] are all pre-processed which is outside of the learning
process.

Inspired by the above-mentioned works, in our work, we propose a new multi-
order multi-stream feature analysis module, which is conducted at the interme-
diate features that capture more discriminative and representative motion infor-
mation as compared to the original video data. Specifically, a slow-fast feature
analysis module is added to consolidate the features of both the slowly and fast-
moving joints at multiple orders which significantly enhances the gesture-aware
features for more reliable gesture recognition.

3D Hand pose estimation. 3D hand pose estimation from RGB images has
received much attention recently [2, 5, 6, 23, 26, 40]. However, only a few works
[22, 29] focused on performing gesture recognition and 3D hand pose estimation
from the RGB videos jointly. Tekin et al. [29] predicted hand pose and action
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categories first, and then use the predicted information to do the gesture recog-
nition.

We propose to leverage the joint-aware features for mutual 3D pose estima-
tion and gesture recognition. A novel collaborative learning method is proposed
which iteratively boosts the performance of the two tasks by optimizing the
joint-aware features which are crucial for both tasks. It also enables the weakly-
supervised learning for 3D hand pose estimation.

Joint gesture/action recognition and 3D pose estimation. Gesture
(or action) recognition and 3D pose estimation are highly related, thus many
works performed gesture (or action) recognition based on the results of pose
estimation. In the Skeleton-based gesture (or action) recognition [9, 16, 19, 17,
20, 24], joints’ location (pose) information is used for recognizing the gesture (or
action) categories. In the RGB-based action recognition, Liu et al. [21] also pro-
posed to recognize human actions based on the pose estimation maps. Nie et al.
[35] and Luvizon et al. [22] performed pose estimation and action recognition in
a single network, yet they did not consider these two tasks mutually to optimize
the performance of each other, i.e., they performed the two tasks either in a
parallel way or in a sequential way.

Different from the aforementioned methods, we design a new collaborative
learning method that boosts the learning of gesture recognition and 3D hand
pose estimation in an iterative manner as shown in Fig. 1. To the best of our
knowledge, our method is the first that learns gesture-aware and hand pose-aware
information for boosting the two tasks progressively.

Weakly-Supervised learning on 3D hand pose estimation. In the past
few years, several works focus on weakly-supervised learning in 3D pose estima-
tion and 3D hand pose estimation areas, since it is hard to obtain the 3D pose
annotations. Cai et al. [3, 4] proposed a weakly-supervised adaptation method
by bridging the gap between fully annotated images and weakly-labelled images.
Zhou et al. [37] transformed knowledge from 2D pose to 3D pose estimation
network using re-projection constraint to 2D results. Chen et al. [8] used the
multi-view 2D annotation as the weak supervision to learn a geometry-aware 3D
representations.

All aforementioned methods still used 2D joint information as the weak su-
pervision to generate 3D hand poses. Differently, we propose that the gesture
label can also be used as the weak supervision for 3D hand pose estimation. Our
experiments show that this weak-supervised learning method is efficient.

3 Methodology

We predict gesture categories and 3D hand joint locations directly from RGB
image sequences as illustrated in Fig. 1. Specifically, the input is a sequence of
RGB images centered on hand which is fed to a pre-trained ResNet [11] to learn
joint-aware feature maps J (as shown in Fig. 1). The learned J are then fed to
pose sub-network and gesture sub-network which learn collaboratively for more
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discriminative features. The whole network is trained in an end-to-end manner,
more details to be presented in the following subsections.

3.1 Collaborative Learning for Gesture Recognition and 3D Hand
Pose Estimation

Gesture recognition and 3D hand pose estimation are both related to the joint-
level features. Joints’ locations have been used for skeleton-based action recog-
nition and gesture recognition, while gesture classes also contain potential hand
posture information that is useful for hand pose estimation.

We propose a collaborative learning method that simultaneously learns the
gesture features and 3D hand pose features mutually in an iterative way, as
illustrated in Fig. 1. As described above, the pre-trained ResNet [11] is used to
learn the joint-aware feature maps J . Specifically, we equally divide the joint-
aware feature maps J to N groups, where N is the number of hand joints, i.e.
J = {Ji|i = 1, ..., N}, and Ji is the subset of feature maps representing the
joint i (i ∈ [1, N ]).
Pose Sub-Network: Following the previous works [18, 37, 40], we first use a
Pose Feature Analysis module to estimate the 2D heatmaps based on the inter-
mediate features for generating the 3D hand pose. The Pose Feature Analysis
module is composed by two parts: 2D hand pose estimation part and depth
regression part, which is similar to [18, 37, 40]. For the 2D hand pose estima-
tion part, its input are the joint-aware feature maps J and its output are N
heatmaps (denoted by H). Each map Hi is a H ×W matrix, representing a 2D
probability distribution of each joint in the image.

Follow the deep regression module in [18, 37]. We aggregate the joint-aware
feature maps J and the generated 2D heatmaps H with 1 × 1 convolution by
a summation operation, the summed feature maps are input of the deep re-
gression module. Here the 1 × 1 convolution is used to map the generated
2D heatmaps H and the joint-aware feature maps J to the same size. The deep
regression module contains a sequence of convolutional layers with pooling and a
fully connected layer in order to regress the depth values D = {Di|i = 1, ..., N},
where Di denotes the depth value of the ith joint.

Since the output of pose sub-network is the input of the gesture sub-network,
and pose sub-network and gesture sub-network operate iteratively (as shown in
Fig. 1), we set the input and output of pose sub-network the same size. To keep
the size constant, we first duplicate the depth values to the same size of the
heatmaps, and concatenate them with 2D heatmaps. For each joint, its depth
value is a scalar, while heatmaps size is H × W . Thus, we duplicate depth
value HW to match heatmaps size to facilitate feature concatenation. Secondly,
the 1 × 1 convolution is used to map the concatenated feature maps and the
joint-aware feature maps J to the same size to generate the output of pose
sub-network, named pose-optimized joint-aware feature maps P (see Fig. 1).
Gesture Sub-Network: The input of Gesture Sub-Network is obtained by ag-
gregating the joint-aware feature maps J and pose-optimized joint-aware feature
maps P with 1× 1 convolution followed by a summation. The resultant feature
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maps are fed to the Gesture Feature Analysis module to generate the gesture-
optimized joint-aware feature maps G and gesture category y (see Fig 1). Where
the Gesture Feature Analysis module contains a sequence of convolutional layers
as well as temporal convolution (TCN) layers to get the temporal relation, TCN
layers are used here to predict the gesture class y.

Collaborative learning method: As shown in Fig. 1, we design a collaborative
learning strategy to perform gesture recognition and 3D hand pose estimation in
an iterative way. Our proposed framework’s learning processes can be described
in the following stages:

(1) Generating J : The pre-trained ResNet [11] is used to learn the joint-aware
feature maps J .

(2) Generating P and Predicting 3D Hand Pose: The learned feature maps
J are fed to Pose Feature Analysis module (shown in Fig. 1) to generate
3D hand poses (2D Heatmaps H and depth values D), and also the pose-
optimized joint-aware feature maps P.

(3) Aggregating input to Gesture Sub-Network: The 1× 1 convolution is
used to generate intermediate feature maps by aggregating the joint-aware
feature maps J and the pose-optimized joint-aware feature maps P.

(4) Generating G and Recognizing Gesture Class: The intermediate fea-
ture maps are fed to Gesture Feature Analysis module as input to generate
the gesture-optimized joint-aware feature maps G and to recognize gesture
category y.

(5) Aggregating input to Pose Sub-Network: We aggregate the gesture-
optimized joint-aware feature maps G and the joint-aware feature maps J
with 1×1 convolution followed by a summation. The aggregated feature maps
are fed to next iteration’s Pose Sub-Network as input for further feature
learning.

(6) Stage 2 to 5 repeat in an iterative way to perform gesture recognition and
hand pose estimation collaboratively for further improving the performance.

3.2 Multi-Order Multi-Stream Feature Analysis

As discussed in Section 2, prior studies have shown that motion information
such as optical flow [28, 34] is crucial in video-based recognition. As we aim to
learn joint-aware features, we propose a multi-order multi-stream feature analysis
module as shown in Fig. 2 to learn the motion information based on the joint-
aware features. The proposed multi-order multi-stream module participates in
the Gesture Feature Analysis module (see Fig. 1).

Since the pre-trained ResNet [11] and our pose sub-network operate at the
image level, the corresponding feature maps belonging to hand joints in an image.
We name the image-level features as Zero-Order Features (denote by Zo,
which stand for pose information and static information), as shown in the top
line of Fig. 2, the cubes in it are feature maps of the corresponding hand joints.
Zero-Order features form N ×C ×H ×W tensors, where N is the total number
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Fig. 2. Illustration of the multi-order multi-stream feature analysis module: With the
zero-order features Zo as input, the multi-order multi-stream analysis generates motion
information on the intermediate features including first-order slow & fast features and
second-order slow & fast features. These four motion features, together with the zero-
order features, are fed to five multi-scale relation modules (more details in Fig. 3),
respectively, to generate gesture-optimized joint-aware feature maps G and gesture
category y. The generated G are aggregated with joint-aware feature maps J and fed
to the pose sub-network for pose feature learning. Our multi-order multi-stream feature
analysis module participates in the Gesture Feature Analysis module, as shown in Fig.
1. (More description of Fig.2 are illustrated in supplementary material.)

of hand joints, C is the number of channels for each hand joint, H and W are
the height and width of feature maps, respectively.

First-Order Features can be seen as velocity features. A temporal neigh-
borhood pair of feature maps is constructed from the entire Zero-Order Features
as follows:

U1 = {〈Zot−1, Zot〉 : t ∈ T} (1)

Fot = Zot − Zot−1 (2)

where T is the length of input image sequences. First-order features of each joint
are calculated by subtracting features of one frame from the previous frame. We
use Zot minus Zot−1 to get the first-order features (denote by Fo) as in Eq. 2.

Second-Order Features can be seen as the acceleration features. We con-
struct a triplet subset for each frame’s features:

U2 = {〈Zot−1, Zot, Zot+1〉 : t ∈ T} (3)

Sot = (Zot+1 − Zot)− (Zot − Zot−1) = (Fot+1 − Fot) (4)
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Similar to the manner of getting first-order features, second-order features of
each joint are calculated by subtracting features of current frame’s first-order
features from its previous frame’s first-order features. We use Fot+1 minus Fot
to get the second-order features (So) by Eq. 4.

Slow-fast Feature Analysis: Slow and fast moving joints are both useful in
gesture recognition. The features representing static tendency joints and motion
tendency joints encode different levels of motion information. Instead of directly
considering these motion features aggregately, we propose to explicitly learn
these motion levels separately. Specifically, we design a slow-fast feature analysis
method to explicitly distinguish these slow-moving and fast-moving joint features
from First-Order Features Fo and Second-Order Features So. In this way, both
static tendency joints and motion tendency joints can be exploited.

First-order features and second-order features tensors are of the shape N ×
C×H ×W (the same as the zero-order ones). We first reshape these features to
N ×CHW matrices (where N is the number of hand joints), and then calculate
the L2 norm on each joint’s first-order and second-order feature vector (with the
shape of 1×CHW ) from the reshaped features matrices, respectively. There will
be N L2 norm results, denoted by Feature Difference (FD = {FDi|i = 1, ...N},
a N × 1 vector). Each FDi is a value representing the motion magnitude of
each corresponding joint. We adopt Gaussian distributions to obtain the feature
maps of slow-moving and fast-moving joints. For slow motion analysis, we aim
to enhance features from the more static joints, i.e., assign larger weights to
joints that move more slowly. We use a Gaussian function (with FDmin as mean
and (FDmax − FDmin)/3 as standard deviation) to map FD values to weights
(FDmin/FDmax denotes the min/max FD values). With this mapping, the
weight of the joint with the min/max motion magnitude (FDmin/FDmax) will
be close to 1/0. As there are N hand joints, we will obtain a N × 1 slow vector
that contains weights for the features of N joints. Similarly, we aim to enhance
features from the more dynamic joints using the fast motion analysis module. We
thus set FDmax and (FDmin−FDmax)/3 as the mean and standard deviation.
In this way, the joint that has min/max motion magnitude will have a weight
around 0/1.

When the slow and fast motion analysis modules apply on the first-order
and second-order features Fo and So, we obtain four N × 1 vectors that contain
weights of features of N joints as shown in Fig. 2: 1) First-order slow vector (fos);
2) First-order fast vector (fof ); 3) Second-order slow vector (sos); and 4) Second-
order fast vector (sof ). All these four vectors are used to refine the zero-order
features Zo which are first reshaped to an N×CHW matrix and then multiplied
with these four vector separately. The embedding features are then reshaped
back to N × C × H ×W tensors, namely, first-order-slow features, first-order-
fast features, second-order-slow features and second-order-fast features as shown
in Fig. 2. These four features together with the zero-order features are fed to the
multi-scale relation module (details to be discussed in the Sec. 3.3), respectively.
Finally, the results of each stream are averaged to obtain the gesture-optimized
joint-aware feature maps G and the gesture category y.
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Fig. 3. Illustration of the multi-scale relation module: The multiple scale analysis pro-
cess the feature maps from the slow-fast feature analysis at three different levels to
generate relations at each level. It interact with the Gesture Sub-network by applying
temporal convolution (TCN) on Level 3 (containing global information) to generate
the classification scores. Node up-sampling is applied to keep the input and output of
the same shape.

3.3 Multi-scale relation module

Considering different levels of semantic information contained in the hierarchical
structure of hand, human hand can be defined with different scales. As shown
in Fig. 3, we show three levels, where the level-1 is the local level consisting of
the hand joints, and the level-2 is the middle level representing five fingers and
palm. For the level-3, we see the hand globally as complete holistic information.
Following the connection between contiguous scale, we use the structure pooling
to perform feature aggregation across these three scales, and recognize gesture
class y at the Level-3 using TCN, since it contains the global information.

Structure pooling means we use average pooling over the hand joints by
following hierarchical physical structure of hand to perform step-wise feature
aggregation. We first average features of the joints that belong to each finger
or palm, in order to get features for the five fingers and palm (see Fig. 3),
then average features of five fingers and palm to obtain the final global features
representing full hand.

Additionally, we calculate a relation matrix for each level to better learn the
features at each scale. Take the first level as the example; the whole feature maps
size is N × C ×H ×W . We first activate it through two embedding function (
1× 1× 1 convolution). The two embedding features are rearranged and reshape
to a N × CHW matrix and CHW × N matrix. They are then multiplied to
obtain a N × N relation matrix. The values of the matrix mean the degree of
relation between each pair of joints. The softmax function is used here to do the
normalization. In this way, we can calculate relation matrices for each level and
use them to refine the feature maps at each hand scale.

To maintain the input and output of this module in the same shape, we use
the node up-sampling method: joints’ features from the higher level are dupli-
cated to the corresponding child joint in the lower level. In addition, the skip-
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connections (see thin blue arrows in Fig 3) are used over different spatial scales
of hand to better learn multi-scale hand features and to preserve the original
information. Our multi-scale network participates in each stream of multi-order
multi-stream module (as shown in Fig. 2).

3.4 Weakly-Supervised Learning Strategy

Weakly-supervised 3D hand pose estimation using gesture labels: An-
notating 3D poses is often laborious, and it’s difficult to have a large amount of
video samples with 3D pose annotations for training. In the supervised learning,
the pose-optimized joint-aware feature maps P and the gesture-optimized joint-
aware feature maps G are learned based on the joint-aware feature maps J . We
therefore propose a weakly-supervised learning method that use gesture labels
as weak supervision for 3D hand pose estimation. We provide different ratios of
training data with 3D pose annotations in training process.

Weakly-supervised gesture recognition using pose labels: When only
a few videos have gesture labels, we can similarly use 3D hand pose annotations
as weak supervision for gesture recognition. We provide different ratios of train-
ing data with gesture labels in training to make our method more applicable.

3.5 Training

We use the following losses in training. 2D Heatmaps loss. L2d =
∑N

n=1 ‖Hn−
Ĥn‖22, This loss measures the L2 distance between the predicted heatmaps Hn

and the ground-truth heatmaps Ĥn. Depth Regression loss. L3d =
∑N

n=1 ‖Dn−
D̂n‖22, where Dn and D̂n are the estimated and the ground truth depth values,
respectively. L3d is also based on the L2 distance. Classification loss. We use
the standard categorical cross-entropy loss to supervise the gesture classification
process, which is Lc = CrossEntropy(y, ỹ), where y is the class predicted score
and ỹ is the ground truth category.

Fully-Supervised training strategy. In our implementation, we first fine-
tune the ResNet-50 to make it sensitive to human joint information. We then
train the entire network in an end-to-end manner with the objective function:

L = λ2dL2d + λ3dL3d + λcLc (5)

Weakly-Supervised training strategy. Based on the Eq. 5, we set λ2d = 0
and λ3d = 0 when the samples do not have 3D pose annotations and we use
gesture categories as weak supervision for 3D hand pose estimation. Similarly,
we set λc = 0 for video sequences without gesture labels, where we use 3D pose
annotations as weak supervision for gesture recognition.

4 Experiment

Implementation Details: We implement our method with the PyTorch frame-
work, and optimize the objective function with the Adam optimizer with mini-
batches of size 4. The learning rate starts from 10−4, with a 10 times reduction
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when the loss is saturated. Following the same setting in [18, 37], the input im-
age is resized to 256× 256, and the heatmap resolution is set at 64× 64. In the
experiment, the parameters in the objective function are set as follows: λ2d = 1,
λ3d = 0.001 and λc = 0.001. For the weakly-supervised learning, we choose
the 15% to 40% samples as the weakly supervision samples and set λ2d = 0 and
λ3d = 0 when the samples do not have 3D pose annotations (gesture categories
are used as weak supervision for 3D hand pose estimation). Additionally, we set
λc = 0 for video sequences without gesture labels, where 3D pose annotations
are used as weak supervision for gesture recognition as described in in Sec. 3.4.

Following [34], each input video is divided into K segments and a short clip
is randomly selected from each segment in training. On testing, each video is
similarly divided into K segments and one frame is selected from each segment
to make sure that temporal space between adjacent frames is equal to T/K. The
final classification scores are computed by the average over all clips from each
video, and the pose estimation is presented on image level.

Datasets: We perform extensive experiments on the large-scale and chal-
lenging dataset: First-Person Hand Action (FPHA) [10] for simultaneous gesture
recognition and 3D hand pose estimation. To the best of our knowledge, this is
the only publicly available dataset that provides labels of accurate 2D & 3D
hand poses and gesture labels. The dataset consists of 1175 gesture videos with
45 gesture classes. The videos are performed by 6 actors under 3 different sce-
narios. A total of 105, 459 video frames are annotated with accurate hand pose
and action classes. Both 2D and 3D annotations of the total 21 hand keypoints
are provided for each frame. We follow the protocol in [10, 29] and use 600 video
sequences for training and the remaining 575 video sequences for testing.

Evaluation Metrics: We adopt the widely used metrics for evaluation of
gesture recognition and 3D hand pose estimation. For gesture recognition, we
directly evaluate the accuracy of video classification. For 3D pose estimation,
we use the percentage of correct keypoints (PCK) score that evaluates the pose
estimation accuracy with different error thresholds.

4.1 Experimental Results

Gesture Recognition: Table 1 shows the comparison with state-of-the-art ges-
ture recognition methods. It can be seen that our method outperforms the state-
of-the-art by up to 3%, showing its effectiveness gesture recognition. Addition-
ally, augmenting each of our proposed module (multi-scale relation, multi-order
multi-stream and collaborative learning strategy) yield improved gesture recog-
nition performance.

3D Hand Pose Estimation: We compare our method with prior works on
FPHA as shown in the first graph in Fig. 4. Table 2 shows three 3D PCK results
at three specific error threshold. It can be seen that our method outperforms the
state-of-the-art with a large range between 0mm and 30mm. Even though we
use color images, our results are better than [10] that uses depth images which
demonstrates the advantage of our proposed method.

Qualitative results on 3D Hand Pose Estimation: Fig. 5 illustrates
3D pose estimations by our method. We compare the ground truth 3D poses
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Table 1. Comparisons to state-of-the-art gesture recognition methods: “Baseline”
means 1-iteration network with no multi-order feature analysis and multi-scale relation.

Model Input modality Accuracy

Joule-depth [12] Depth 60.17%
Novel View [27] Depth 69.21%
HON4D [25] Depth 70.61%
FPHA + LSTM[10] Depth 72.06%

Two-stream-color [28] Color 61.56%
Joule-color [12] Color 66.78%
Two-stream-flow [28] Color 69.91%
Two-stream-all [28] Color 75.30%
[29] - HP Color 62.54%
[29] - HP + AC Color 74.20%
[29] - HP + AC + OC Color 82.43%

Baseline Color 72.17%
Baseline + multi-scale Color 78.26%
Baseline + multi-scale + multi-order Color 83.83%
Baseline + multi-scale + multi-order + 2-iterations Color 85.22%
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Fig. 4. Left: Comparing our method with [10] and [29] for 3D hand pose estimation
with 3D PCK metric. Middle: Comparing our weakly supervised method with the
baseline (with 3D PCK@30) when different amounts of pose labels are used. Right:
Comparing our weakly supervised method with the baseline (with classification accu-
racy) when different amount of gesture labels are used.

(in blue-color structures) and the predicted 3D pose (in red-color structures)
in the same 3D coordinate system. We also provide the predicted 2D poses in
the original RGB image. As Fig. 5 shows, our method is capable of accurately
predicting 3D poses of different orientations with different backgrounds.

4.2 Weakly-supervised Learning

Weakly-supervised results on 3D hand pose estimation: We present mul-
tiple experiments on our weakly-supervised method by providing different ratios
(15% to 40%) of samples with pose labels (gesture labels are provided for all
training samples) and compare with the baseline that does not use gesture labels.
Fig. 4 (middle) shows 3D PCK@30 (percentage of correct keypoint when error
threshold smaller than 30mm) results of the baseline and our weakly-supervised
method. It can be seen that the 3D hand pose estimation is improved signifi-
cantly for all labeled ratios when weak supervision is included. This validates
that joint-aware features in the gesture can benefit 3D hand pose estimation.
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Fig. 5. Qualitative illustration of our proposed method: It shows the predicted 2D poses
shown on the original image. It also compares the predicted 3D poses (the blue-color
structures) and the Ground Truth 3D poses (the red-color structures).

Table 2. Comparisons on 3D pose estimation: Numbers are percentage of correct
keypoint (PCK) over respective error threshold, more results available in Fig. 4 (left).
Our results are based on the proposed 2-iterations multi-order structure.

Error Threshold(mm) PCK@20 PCK@25 PCK@30

Hernando (Depth)[10] 72.13% 82.08% 87.87%
Tekin (RGB)[29] 69.17% 81.25% 89.17%
Ours (RGB) 81.03% 86.61% 90.11%

Weakly-supervised results on gesture recognition: We compare our
weakly supervised method that uses pose labels as weak supervision for gesture
recognition with the baseline which does not use pose labels. We conduct experi-
ments by providing different ratios of training samples with gesture labels, while
the pose labels of all samples are given. As Fig. 4 (right) shows, our weakly-
supervised learning improves the gesture recognition significantly for all labeled
ratios. This validates that joint-aware features in hand poses can improve the
gesture recognition performance greatly.

4.3 Ablation Studies

Impact of number of network iterations: Table 3 shows the 3D PCK results
and classification results of our method under different iterations of collaborative
learning. It can be seen that our method improves with increasing iterations.
This can be expected since hand pose estimation and gesture recognition learn
in a collaborative manner and boost each other. Note that the improvement
of 3D PCK and gesture recognition slows down with the increase of iterations.
We use the two-iteration network in the experiment for the balance between
accuracy and computational complexity. Note all these comparisons are based
on the zero-order framework. We cannot evaluate multi-order network for the
3-itr, 4-itr, 5-itr due to our GPU’s memory limitation.

Effect of the multi-order module: We analyze the advantage of our pro-
posed multi-order module by implementing four variants as shown in Table 4
(part 1, 2, and 4). It can be seen that adding first-order and second-order slow-
fast features leads to an accuracy improvement by 1.7% and 2.9%, respectively.
Our multi-order module (Zero-order + First and Second order slow-fast) achieves
the best accuracy at 85.22%, demonstrating its effectiveness.
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Table 3. Evaluation of our proposed network on gesture recognition and pose estima-
tion with respect to different iteration numbers.

Iteration (itr) number 1-itr 2-itr 3-itr 4-itr 5-itr

Pose estimation (PCK@30) 87.2% 89.3% 89.8% 89.9% 89.9%
Gesture recognition accuracy 78.3% 80.9% 81.7% 81.9% 82.0%

Table 4. Evaluation of our proposed gesture recognition network with different combi-
nations of motion features of different orders and slow-fast patterns. (All experiments
below are based on the 2-iteration network.)

Network setting Accuracy ∆

1 Zero-order 80.87%

2 Zero-order + First-order slow-fast 82.61% 1.74%
Zero-order + Second-order slow-fast 83.80% 2.93%

3 Zero-order + First and Second order slow 82.96% 2.09%
Zero-order + First and Second order fast 82.09% 1.22%

4 Zero-order + First and Second order slow-fast 85.22% 4.35%

Effect of the slow feature and fast feature: We also evaluate the impact
of the slow-fast features and Table 4 (part 3) shows the results. It can be seen
that the slow features and the fast features can improve the accuracy by 2.1%
and 1.2%, respectively, and the best accuracy is obtain when both are included.

Effect of the multi-scale relation: We also assess the effectiveness of the
our multi-scale relation module and Table 1 shows experimental results. As Table
1 shows, removing the multi-scale relation module leads to around 6% accuracy
drop as compared with the “Baseline” and “Baseline + multi-scale”, showing
the benefit of the proposed multi-scale relation.

5 Conclusion

In this paper, we have presented a collaborative learning method for joint gesture
recognition and 3D hand pose estimation. Our model learns in a collaborative
way to recurrently exploit the joint-aware feature to progressively boost the
performance of each task. We have developed a multi-order multi-stream model
to learn motion information in the intermediate feature maps and designed a
multi-scale relation module to extract semantic information at hierarchical hand
structure. To learn our model in scenarios that lack labeled data, we leverage
one fully-labeled task’s annotations as weak supervision for the other very few
labeled task. The proposed collaborative learning network achieves state-of-the-
art performance for both gesture recognition and 3D hand pose estimation tasks.

Acknowledgement

The research was carried out at the Rapid-Rich Object Search (ROSE) Lab,
Nanyang Technological University, Singapore. This research work was partially
supported by SUTD projects PIE-SGP-Al-2020-02 and SRG-ISTD-2020-153.



Collaborative Learning of Gesture Recognition and Hand Pose Estimation 15

References

1. Abavisani, M., Joze, H.R.V., Patel, V.M.: Improving the performance of unimodal
dynamic hand-gesture recognition with multimodal training. In: The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (June 2019)

2. Boukhayma, A., Bem, R.d., Torr, P.H.: 3d hand shape and pose from images in
the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 10843–10852 (2019)

3. Cai, Y., Ge, L., Cai, J., Magnenat-Thalmann, N., Yuan, J.: 3d hand pose estimation
using synthetic data and weakly labeled rgb images. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020)

4. Cai, Y., Ge, L., Cai, J., Yuan, J.: Weakly-supervised 3d hand pose estimation from
monocular rgb images. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 666–682 (2018)

5. Cai, Y., Ge, L., Liu, J., Cai, J., Cham, T.J., Yuan, J., Thalmann, N.M.: Exploiting
spatial-temporal relationships for 3d pose estimation via graph convolutional net-
works. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 2272–2281 (2019)

6. Cai, Y., Huang, L., et al.: Learning progressive joint propagation for human mo-
tion predictionn. In: Proceedings of the European Conference on Computer Vision
(ECCV) (2020)

7. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 6299–6308 (2017)

8. Chen, X., Lin, K.Y., Liu, W., Qian, C., Lin, L.: Weakly-supervised discovery of
geometry-aware representation for 3d human pose estimation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 10895–
10904 (2019)

9. De Smedt, Q., Wannous, H., Vandeborre, J.P.: Skeleton-based dynamic hand ges-
ture recognition. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. pp. 1–9 (2016)

10. Garcia-Hernando, G., Yuan, S., Baek, S., Kim, T.K.: First-person hand action
benchmark with rgb-d videos and 3d hand pose annotations. In: The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (June 2018)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

12. Hu, J.F., Zheng, W.S., Lai, J., Zhang, J.: Jointly learning heterogeneous features
for rgb-d activity recognition. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2015)

13. Iqbal, U., Garbade, M., Gall, J.: Pose for action-action for pose. In: 2017 12th
IEEE International Conference on Automatic Face & Gesture Recognition (FG
2017). pp. 438–445. IEEE (2017)

14. Klaser, A., Marsza lek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-
gradients (2008)

15. Laptev, I.: On space-time interest points. International journal of computer vision
64(2-3), 107–123 (2005)

16. Liu, J., Shahroudy, A., Xu, D., Kot, A.C., Wang, G.: Skeleton-based action recog-
nition using spatio-temporal lstm network with trust gates. IEEE Transactions on
Pattern Analysis and Machine Intelligence 40(12), 3007–3021 (2018)



16 S. Yang et al.

17. Liu, J., Wang, G., Duan, L., Abdiyeva, K., Kot, A.C.: Skeleton-based human action
recognition with global context-aware attention lstm networks. IEEE Transactions
on Image Processing 27(4), 1586–1599 (2018)

18. Liu, J., Ding, H., Shahroudy, A., Duan, L.Y., Jiang, X., Wang, G., Chichung, A.K.:
Feature boosting network for 3d pose estimation. IEEE transactions on pattern
analysis and machine intelligence (2019)

19. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal lstm with trust gates
for 3d human action recognition. In: European Conference on Computer Vision.
pp. 816–833. Springer (2016)

20. Liu, J., Wang, G., Hu, P., Duan, L.Y., Kot, A.C.: Global context-aware attention
lstm networks for 3d action recognition. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1647–1656 (2017)

21. Liu, M., Yuan, J.: Recognizing human actions as the evolution of pose estimation
maps. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2018)

22. Luvizon, D.C., Picard, D., Tabia, H.: 2d/3d pose estimation and action recognition
using multitask deep learning. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2018)

23. Mueller, F., Bernard, F., Sotnychenko, O., Mehta, D., Sridhar, S., Casas, D.,
Theobalt, C.: Ganerated hands for real-time 3d hand tracking from monocular
rgb. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 49–59 (2018)

24. Nguyen, X.S., Brun, L., Lezoray, O., Bougleux, S.: A neural network based on
spd manifold learning for skeleton-based hand gesture recognition. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)

25. Oreifej, O., Liu, Z.: Hon4d: Histogram of oriented 4d normals for activity recog-
nition from depth sequences. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2013)

26. Rad, M., Oberweger, M., Lepetit, V.: Domain transfer for 3d pose estimation
from color images without manual annotations. In: Asian Conference on Computer
Vision. pp. 69–84. Springer (2018)

27. Rahmani, H., Mian, A.: 3d action recognition from novel viewpoints. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016)

28. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: Advances in neural information processing systems. pp. 568–
576 (2014)

29. Tekin, B., Bogo, F., Pollefeys, M.: H+o: Unified egocentric recognition of 3d hand-
object poses and interactions. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2019)

30. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look
at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition. pp. 6450–6459 (2018)

31. Tu, Z., Xie, W., Qin, Q., Poppe, R., Veltkamp, R.C., Li, B., Yuan, J.: Multi-
stream cnn: Learning representations based on human-related regions for action
recognition. Pattern Recognition 79, 32–43 (2018)
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