

Master of Science in CHEMICAL MODELLING

The Master of Science in Chemical Modelling (MScCM) is a cutting-edge programme that integrates chemistry, materials science, chemical engineering, bioengineering, and artificial intelligence to address real-world industrial and research challenges. The curriculum focuses on computational techniques, process simulation, and data-driven modelling, enabling students to gain hands-on experience in molecular design, catalyst development, and materials discovery. This programme equips graduates with interdisciplinary scientific and technological skills, empowering them to drive innovation in sectors such as pharmaceuticals, petrochemicals, and advanced manufacturing.

Learn More:

Scan the QR code for more information

Programme Features

Develop professional expertise in machine learning for materials design, process simulation, and chemical applications. Gain hands-on experience in data-driven modelling, catalyst design, and materials innovation. Students may choose to specialise in Chemistry and Materials or Chemical and Bioengineering, allowing them to tailor their own learning pathway.

What Is In It For Me?

Core Focus: Master chemical process modelling, optimisation, and Al-driven analytics

Interdisciplinary: Integrates chemistry, engineering, data science & bioengineering

Industry-ready: Apply modelling tools to pharma, biotech & chemical process

Flexible Format: Evening classes for working professionals

Career Boost: Build high-demand skills for roles in R&D, digitalisation, and smart manufacturing

Programme Structure

Duration: Full-time (1 – 2 Years) | Part-time (2 – 4 Years)

Mode: Coursework Based **Format:** In-person **Intake:** August 2026

Students may independently pursue internships and

research projects within the programme.

Career Prospect

Public Sector:

- NEA, PUB, EMA Process modelling, emission control
- MOM, SCDF Safety and environmental simulation
- MOE, Polytechnics Research & teaching roles

Private Sector:

- Shell, GSK, Micron, Evonik R&D, materials & pharma modelling
- Pfizer, Novartis, BASF Drug development, QA, optimization
- Startups & biotech Al-driven chemical design

Admission Requirements

- Bachelor's degree with minimum Honours (Distinction) or equivalent from a reputable university; majoring in Chemistry, Chemical Engineering, Bioengineering or related fields
- TOEFL ≥ 85 / IELTS ≥ 6.0
 (if your university first degree was not taught in the English language)

Graduation Requirements

- · Complete a minimum of 30 AUs
- A minimum CGPA of 2.5 / 5.0
- Fulfil a minimum candidature of 3 Trimesters for Full-time students and 6 Trimesters for Part-time students.

Tuition Fees

- AY26-27: S\$ 51,012 (30 AU)
- ~SGD 1,700 per AU for AY26/27.
- Costs above includes 9% tax

Contact Us

Email: cceb-msccm@ntu.edu.sg

COURSE PROGRAMME

Core Modules

CH6410	Numerical Methods for Chemical Modelling
CH6420	Advanced Statistics for Data Science Analytics for Chemical Engineering
CH6430	Data Mining in Chemical Engineering and Bioengineering
CH6440	Introduction to Optimization Using AI in Chemical Engineering

Elective Modules

CH6450 Molecular Modelling CH6460 AI for Chemical Sciences CH6470 Computational Design of Catalysts	
All 151 Gillionidal Goldings	
CH6470 Computational Design of Catalysts	
Computational Design of Catalysis	
CH6480 Computational Material Sciences	
CH6490 Process Design, Optimization and Supply Chain	
CH6510 Physics-Informed Machine Learning Engineering Applications	in
CH6520 Applications of Modelling and Simul in Pharmaceutical Processes	ation
CH6530 Data-Driven Computational Fluid Dynamics for Chemical Engineering Applications	
BG6810 Bioimaging Analysis	
BG6820 Digital Twin of Human: Enabling Precision Health	
BG6830 Quantitative Methods for Bioengine	ering
CH6540 Project Management in Digital World	d
CH6550 MSc Research on Chemical Modellin	ıg I
CH6551 MSc Research on Chemical Modellin	g II
CH6552 Professional Internship I	
CH6553 Professional Internship II	

Non-Credit Bearing Courses

Lab Rotation

CH6555 Academic Communications