

COURSE CONTENT

Academic Year	2022/2023	Semester	1	
Course Coordinator	Assoc Prof. Liu	Bin		
Course Code	CH2108			
Course Title	Thermodynamic	S		
Pre-requisites	CH1104			
No of AUs	3			
Contact Hours	26 hours lecture	e, 13 hours tutorial		
Proposal Date	22/10/2019			

Course Aims

In this course, you will learn the conceptual forms of energy, ideal gas, thermodynamics properties, and the laws of thermodynamics. The applications of thermodynamics are studied in terms of different phases and their coexistence via phase equilibria and mathematical formula, which will be derived from the 1st and 2nd laws of thermodynamics. In particular, the phase equilibria criteria are introduced to understand the occurrence of the phase separation.

Intended Learning Outcomes (ILO)

Upon the successful completion of the course, you should be able to:

- 1. Describe basic concepts and properties of thermodynamics and associated measurement processes.
- 2. Outline the three laws of thermodynamics.
- 3. Apply the first and second laws of thermodynamics (mathematical statements) to derive correct equations or formulas for solving relevant problems.
- 4. Explain the dynamics and properties of fluid and gaseous conditions and associated laws.
- 5. Explain phase equilibria concepts and associated laws.

Course Content

- 1. Introduction to Thermodynamics
- 2. The First Law of Thermodynamics
- 3. Volumetric Properties of Pure Fluids
- 4. The Second Law of Thermodynamics
- 5. Calculus of Thermodynamics
- 6. Vapor-Liquid Equilibrium
- 7. Residual Properties

Assessment (includes both continuous and summative assessment)										
Component	Course LO Tested	Related Programme LO or	Weighting	Team /Individual	Assessment rubrics					
		Graduate								
1. Final Examination (2.5 hrs, open book)	Exam questions will be evenly distributed across the course contents including 1 st and 2 nd laws of thermodynamics, calculus of thermodynamics, vapor-liquid equilibrium and etc to meet the course LO 1 to 5.	Attributes EAB SLO (a), (b), (c), (d), (g)	60%	Individual	Appendix 1 (Learned Knowledge) Understanding of basic laws of thermodynamics such as 1 st and 2 nd law of thermodynamics. (Application) Applying thermodynamic concepts to thermodynamic systems. (Calculations) Design thermodynamic processes. (Analysis) Analyze thermodynamic					
2. Continuous Assessment - Quiz	Quiz questions will be evenly distributed across the course contents including 1 st and 2 nd laws of thermodynamics to meet the course LO 1 to 2.	EAB SLO (a), (b), (c), (d)	40%	Individual	processes using 1 st and 2 nd law Appendix 1 (Learned Knowledge) Understanding of basic laws of thermodynamics such as 1 st and 2 nd law of thermodynamics. (Application) Applying thermodynamic concepts to thermodynamic systems. (Analysis) Analyze thermodynamic processes using 1 st and 2 nd law					

Course Intended EAB's 12 Graduate Attributes*																				
Learning Outcomes	Cat	(a)	(b)	(C)	(d)	(e)	(f)	(g)	(h))	(i)	(j)	(k)	(I)						
	Core	•	٠	•	٠			O			š	š								
1. Describe basic o associated measu	concepts ar rement pro	nd pro cesse	pertie s.	es of t	herm	odyna	amics	and		(a)), (b)), (C),	(d)							
2. Outline the three	e laws of th	ermo	dynar	nics.						(a)), (b)), (C),	(d)							
3. Apply the first an statements) to der relevant problems.	nd second ve correct	laws o equat	of the ions o	rmody or forr	/nami nulas	cs (m for so	ather olving	natica	al	(a)), (b)), (c),	(d), (i), (j)						
4. Explain the dyna conditions and ass	amics and p ociated lav	oropei /s.	rties o	of fluid	l and	gase	ous			(a) (i),), (b) , (j)	, (C),	(u), (y),						
5. Explain phase e	quilibria co	ncept	s and	l asso	ciate	d laws	5.			(a)), (b)), (C),	(d)							
ormative feedback xamination results; arker's report on ov uiz answers will be	verall exam discussed	inatio in cla	n per ss	forma	nce v	vill be	uploa	aded	to N	ITU	leari	n;								
earning and Teach	ning appro	ach																		
		this a	ppro	ach s	uppo	ort stu	dent	s in a	chi	evi	ng t	he								
Approach H	earning ou	itcom												ture Demonstrate how to carry out a procedure such as working through a problem, use incomplete handouts which enabling students participating in class.						
Approach H Lecture [Demonstrat problem, participating	e how use in g in cla	/ to ca comp ass.	arry o blete h	ut a p nando	oroced outs w	ure s hich e	uch a enabli	s w ng s	orki stuc	ing t dents	hrou s	gh							
Approach H I ecture [a r Tutorial 1 t	Demonstrat a problem, i participating TBL classrc opics	e how use in g in cla oom di	/ to ca comp ass.	arry o blete h sion s	ut a p ando essio	oroced outs w	ure s hich e tutor	uch a enabli ial qu	is w ng s esti	orki stuc	ing t dents s and	hrouç s d rela	gh ted							

2) Sandler, S.I., Chemical, Biochemical, and Engineering Thermodynamics, 4th ed., Wiley (2006).
3) Elliot, J.R and Lira, C.T., Introductory Chemical Engineering Thermodynamics, 2nd ed., Prentice Hall PTR (2012).

4) Rogers, G.F.C. and Mayhew, Y.R., Thermodynamic and Transport Properties of Fluids (SI units), 5th ed., Oxford Basil Blackwell (1995).

5) Handbook of Chemistry and Physics, 93rd Ed., Lied, D.R., ed.; CRC press: Boca Raton (2012).

Course Policies and Student Responsibilities

General: Students are expected to complete all online activities and take all scheduled assignments and tests by due dates. Students are expected to take responsibility to follow up with course notes, assignments and course related announcements. Students are expected to participate in all tutorial discussions and activities.

Continuous assessments: Students are required to attend all continuous assessments. Absenteeism: Continuous assessments make up a significant portion of students' course grade. Absence from continuous assessments without officially approved leave will result in no marks and affect students' overall course grade.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the <u>academic integrity website</u> for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Course Instructors										
Instructor Office Location Phone Email										
Liu Bin N1.2			B1-06	65137971	LiuBin@ntu.edu.sg					
Planned Weekly Schedule										
Week	Week Topic Course LO Readings/ Activities									
1	Introduction Thermodyna s	to amic	 Describe bar properties of the 2. Define difference quantities and units of thermostic 	nsic concepts and nermodynamics. rent formless measurement odynamics.	Reading textbooks and lecture notes, and watching online videos.					
2	The First Law of Thermodynamic s		 Explain the First Law of Thermodynamics and the associated processes. Apply mathematical equation of the first law for relevant problem scenarios. 		Reading textbooks and lecture notes, and play online mini- games.					
3-4	Volumetric Properties of Pure Fluids		 Recognize to volumetric pro fluids in relation and temperature 	he different perties of pure n to given pressure ire conditions.	Reading textbooks and lecture notes, and watching online videos.					

		 Apply relevant equation to find out required values for given fluid conditions. Explain ideal gas and associated processes and equations. Apply relevant equations to find out required values for given ideal gas conditions. 	
5-7	The Second Law of Thermodynamic s	 Explain concepts of Reversibility. Outline the functional steps of a Heat Engine and Ideal Carnot Cycle. Explain the Second Law of Thermodynamics. Apply the second law mathematical statement to derive equations to solve relevant problems. State third law of thermodynamics. 	Reading textbooks and lecture notes, and watching online videos.
8-10	Calculus of Thermodynamic s	Apply calculus of thermodynamics functions and variables to find required properties in given thermodynamics problems.	Reading textbooks and lecture notes.
11-12	Vapor-Liquid Equilibrium	 Explain phase equilibria concepts and associated laws. Apply the relevant laws to derive correct equations for problem solving. 	Reading textbooks and lecture notes, and watching online videos.
13	Residual Properties	 Describe residual properties and property relations. Explain relevant methods and equations to evaluate residual properties. 	Reading textbooks and lecture notes.

Appendix 1: Assessment Criteria

<u>Criteria</u>	Unsatisfactory:	Borderline:	Satisfactory:	Very good: 70%	Exemplary: >90%
(Learned	Lacks	Partial	Full	Deep and	Deep and
Knowledge)	understanding of	understanding	understanding of	complete	complete
Understanding	theories, laws,	of theories,	theories, laws,	understanding of	understanding of
of basic laws	concepts and	laws, concepts	concepts and	theories, laws,	theories, laws,
of .	terms of	and terms of	terms of	concepts and	concepts and
thermodynami	thermodynamics	thermodynami	thermodynamics	terms of	terms of
CS SUCH as 1 st	Linchie te enniv	CS	Able to enable the	thermodynamics	thermodynamics
thormodynami	the theories and	Able to epply	Able to apply the	Able to eaply the	Able to eaply the
cs	concents to	the theories	concents to	theories and	theories and
03.	simple problems	and concepts	most problems	concepts to most	concepts to all
	of	to simple	of	problems of	problems of
	thermodynamics	problems of	thermodynamic	thermodynamic	thermodynamic
	such as	thermodynami	processes	processes	processes
	processes	cs such as	involving heat	involving change	involving change of
	involving change	processes	transfer and	of states, heat	states, heat
	of states.	involving	work done	transfer and work	transfer and work
		change of		done	done
		states			
(Application)	Unable to	Able to	Able to	Able to	Able to understand
Applying	understand	partially	understand	understand	theoretical
thermodynami	theoretical	theoretical		theoretical	concepts of
c concepts to	thermodynamics	ineoretical	thermodynamics	thormodynamics	inermodynamics
c systems	and apply the	thermodynami	and apply the	and apply the	knowledge to
o systems.	knowledge to	cs but unable	knowledge to	knowledge to	design and
	design and	to apply the	design and	design and	optimize complex
	optimize simple	knowledge to	optimize simple	optimize medium	thermodynamic
	thermodynamic	design and	thermodynamic	level	processes
	processes	optimize	processes	thermodynamic	
		simple		processes	
		thermodynami			
		c processes			
(Calculations)	Calculations are	Calculations	Calculations	Calculations	Calculations
Design	attempted but	are attempted	attempted are	attempted are all	attempted are all
Inermodynami	are	but represent	mosuy	successiul and	successiul and
c processes.	and not	of the	sufficiently	comprehensive to	comprehensive to
	comprehensive	calculations	comprehensive	solve the problem	solve the problem
	Comprenentitive	required with	to solve the		
		some	problem		Calculations are
		comprehensiv	1		presented
		e to solve the			elegantly
		problem			
(Analysis)	Use the	Use the	Use the	Use the	Use the
Analyze	quantitative	quantitative	quantitative	quantitative	quantitative
thermodynami	analysis of data	analysis of	analysis of data	analysis of data	analysis of data as
c processes	as the basis for	uata as the	as the basis for	as the basis for	and thoughtful
	iudamonts	ordinary	iudamonts	iudamonte	iudamonte
	although is	iudaments	drawing	drawing insightful	drawing insightful
	hesitant or	drawing	reasonable and	and qualified	and carefully
	uncertain about	plausible	appropriately	conclusions from	qualified
	drawing	conclusions	qualified	this work	conclusions from
	conclusions	from this work	conclusions from		this work
	from this work		this work		

Appendix 2: The EAB (Engineering Accreditation Board) Accreditation SLOs (Student Learning Outcomes)

- a) **Engineering knowledge:** Apply the knowledge of mathematics, natural science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems
- b) **Problem Analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c) **Design/development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- d) **Investigation:** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e) **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- f) **The engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- g) **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for the sustainable development.
- h) **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i) **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- j) Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- k) Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and economic decision-making, and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long Learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change