Academic Year	2024/2025	Semester	1					
Course Coordinator	Zhong Liang							
Course Code	BG3112							
Course Title	Cardiovascular Engineering							
Pre-requisites	CB1117							
No of AUs	3							
Contact Hours	26hrs Lecture	; 12hrs Tutorial						
Proposal Date	29 March 202	3						

Course Aims

This course aims to support you to learn and understand the fundamentals in fluid mechanics and be able to apply this knowledge to solve problems in cardiovascular engineering. You would also learn and study the anatomy of the human cardiovascular system, understand blood rheology and phenomenon in blood circulation, utilize basic steady and unsteady flow models to describe flow mechanics in the cardiovascular system, and learn basic concepts in heart dynamics.

Intended Learning Outcomes (ILO)

Upon the successful completion of this course, you shall be able to:

- 1. Define the basic properties of fluids, the conversation laws, and fundamental concepts in fluid dynamics,
- 2. Apply fundamental flow equations and physical relations to solve basic flow problems in hydrostatics flow.
- 3. Illustrate the interior and exterior parts of the human heart, path of the blood through the cardiac circuits, cardiac conduction system, electrocardiogram, cardiac output
- 4. Formulate Newton's laws, normal forces, tension, the angle dependence, the general concept of friction, elasticity, stress and strain, Hooke's law, Young's modulus, shear modulus, bulk modulus, biomechanics of blood vessels
- Interpret viscosity, viscosity of blood, Newtonian and non-Newtonian fluids, flow in pipe Reynolds numbers, turbulent and unsteady flow, understand flow in constrictions and curved pipes, dynamic viscosity, kinenamtic viscosity and apparent viscosity in cardiovascular system

Course Content

Continuum fluids and mechanics
Viscosity and viscous stresses
Benoulli's equation
Momentum balance
Viscosity
Biomechanics
Anatomy and physiology of the cardiovascular system
Cardiovascular mechanics

Arterial stiffness and arteriosclerosis Wave propagation in arteries Viscosity of blood and flow past bodies Blood flow in veins Flow in the microcirculation Blood flow in the lung

Assessment (includes both continuous and summative assessment)

Component	Course LO Tested	Related Programme LO or Graduate Attributes	Weighting	Team/ Individua I	Assess- ment rubrics
1. Final Examination (60%) (2hrs, closed book)	1-5	(a), (b), (c), (d)	60 %	Individual	See appendix 1
2. Tutorial Assessment (40%) a. Quiz 1 (20%)	1-5	(a), (b), (c), (d)	20 %	Individual	See appendix 1
b. Quiz 2 (20%)	1-5	(a), (b), (c), (d)	20%	Individual	See appendix 1
Total	•	•	100 %		

Mapping of (Course						uate							
Intended Learning Outcomes	Cat	(a	(b	(c	(d	(e)	(f)	(g	(h	(i)	(j)	(k	(I)
	Core	•	•	٠	٠		0	0					
1. Define the basic properties of fluids, the conversation laws, and fundamental concepts in fluid dynamics (a), (b), (c), (d)													
2. Apply fundamental flow equations and physical relations to solve basic flow problems in hydrostatics flow. (a), (b), (c), (d)													
to solve basic flow problems in hydrostatics flow.(a), (b), (c), (d)3. Understand the interior and exterior parts of the human heart, path of the blood through the cardiac circuits, cardiac conduction system, electrocardiogram, cardiac(a), (b), (c), (d)													

output		
angle dep elasticity,	I Newton's laws, normal forces, tension, the bendence, the general concept of friction, stress and strain, Hooke's law, Young's shear modulus, bulk modulus, biomechanics essels	(a), (b), (c), (d)
non-Newto turbulent constrictior kinenamtic	l viscosity, viscosity of blood, Newtonian and mian fluids, flow in pipe Reynolds numbers, and unsteady flow, understand flow in ms and curved pipes, dynamic viscosity, viscosity and apparent viscosity in ular system	(a), (b), (c), (d)
Legend:		
 Fully c Outco 	consistent (contributes to more than 75% of Ir	ntended Learning
	lly consistent (contributes to about 50% of Int	ended Learning
Outco	•	y
	y consistent (contributes to about 25% of Inte	ended Learning
Outco	,	
Blank Not re	lated to Student Learning Outcomes	
Formative feed		
Examination re Marker's report		uploaded to NTUlearn;
Examination re Marker's report Quiz answers v	sults; on overall examination performance will be ເ	uploaded to NTUlearn;
Examination re Marker's report Quiz answers v	sults; on overall examination performance will be ເ vill be discussed in class	
Examination re Marker's report Quiz answers v _earning and	sults; on overall examination performance will be u vill be discussed in class Teaching approach How does this approach support students	in achieving the out a procedure (e.g., le lecturer incomplete encourage you to

Reading and References

- 1. Transport Phenomena in Biological Systems by George Truskey, Fan Yuan and David F. Katz (2010)
- 2. Introduction to Fluid Mechanics by Robert W. Fox, Phillip J. Pritchard, Alan T. MacDonald, 7th edition (2010)
- 3. Biofluid Mechanics: the human circulation by Krishnan B. Chandran, Ajit P. Yoganathan and Stanely E. Rittgers (2007)
- 4. Analysis of Transport Phenomena by William Dean (1998)
- 5. Applied Fluid Mechanics by Tasos C Papanastasiou (1994)
- 6. Computational and mathematical methods in cardiovascular physiology by Liang Zhong (2019)

Course Policies and Student Responsibilities

General: Students are expected to complete all online activities and take all scheduled assignments and tests by due dates. Students are expected to take responsibility to follow up with course notes, assignments and course related announcements. Students are expected to participate in all tutorial discussions and activities.

Continuous assessments: Students are required to attend all continuous assessments.

Absenteeism: Continuous assessments make up a significant portion of students' course grade. Absence from continuous assessments without officially approved leave will result in no marks and affect students' overall course grade.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the <u>academic integrity website</u> for more information. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Course Instructors

Instructor	Office Location	Phone	Email
Liang Zhong	N1.2-B2-10	67042237	cs-liang.zhong@ntu.edu.sg

Planned Weekly Schedule

Week	Торіс	Course LO	Readings/ Activities
1	Introduction of fluid mechanics	1	Lecture, textbook
2	Mass, energy and momentum balance	2	Lecture, textbook
3	Anatomy and physiology of the cardiovascular system	3	Lecture, textbook
4	Cardiovascular mechanics	4	Lecture, textbook
5	Viscosity and turbulent flow	5	Lecture, textbook
6	Arterial stiffness and arteriosclerosis	4	Lecture, textbook
6	Quiz 1	-	-
7	Blood flow in arteries	1,3,5	Lecture, textbook
8	Viscosity of blood and flow past bodies	5	Lecture, textbook
9	Blood flow in veins	1,3,5	Lecture, textbook
10	Flow in the microcirculation (I)	1,3,5	Lecture, textbook
11	Flow in the microcirculation (II)	1,3,5	Lecture, textbook
12	Blood flow in the lung (I)	1,3,5	Lecture, textbook
12	Quiz 2	-	-
13	Blood flow in the lung (II)	1,3,5	Lecture, textbook

Appendix 1: Assessment Criteria

Criteria	Unsatisfactory <40%	Borderline 40% to 49%	Satisfactory 50% to 69%	Very Good 70% to 89%	Exemplary >90%
fundamental concepts in fluid dynamics	Cannot define or evaluate concepts and properties of	Can define and evaluate concepts and properties of fluids Can define and evaluate fundamental flow equations	Can define, explain, and evaluate concepts and properties of fluids Can define, explain, and evaluate fundamental flow equations	Can define, explain, analyse, and evaluate concepts and properties of fluids Can define, explain, analyse, and evaluate fundamental flow equations	Can define, explain, analyse, synthesize, and evaluate concepts and properties of fluids Can define, explain, analyse, synthesize, and evaluate fundamental flow equations
flow. Illustrate cardiovascular physiology relevant to fluid mechanics in human circulation.	Cannot define anatomical or physiological components related to human circulation	Can define anatomical or physiological components related to human circulation	explain anatomical or physiological components related to human circulation	anatomical or physiological components related	Can define, explain, discuss, and connect concepts in fluids to anatomical or physiological components related to human circulation
Define the fluid properties and behaviours in blood rheology, and perform basic viscometry calculations to determine fluid properties.	Cannot define or evaluate concepts and properties of fluids	Can define and evaluate concepts and properties of fluids	and evaluate concepts and properties of fluids	Can define, explain, analyse, and evaluate concepts and properties of fluids	Can define, explain, analyse, synthesize, and evaluate concepts and properties of fluids
Apply Bernoulli equation to solve flow problems in hemodynamics.	Cannot define or evaluate Bernoulli equation in context of hemodynamics	Can define and evaluate Bernoulli equation in context of hemodynamics	and evaluate Bernoulli equation in context of	Can define, explain, analyse, and evaluate Bernoulli equation in context of hemodynamics	Can define, explain, analyse, synthesize, and evaluate Bernoulli equation in context of hemodynamics

Explain the concepts of	Cannot define or	Can define and	Can define, explain,	Can define, explain,	Can define, explain,
	evaluate unsteady or				analyse, synthesize,
flow models and apply	steady flow in CV			evaluate unsteady or	and evaluate
them in different	systems	systems	flow in CV systems	steady flow in CV	unsteady or steady
cardiovascular flow				systems	flow in CV systems
problems.					
Apply the knowledge of	Cannot define				Can define, explain,
basic heart mechanics	anatomical or	anatomical or	explain anatomical or	and discuss	discuss, and connect
to perform basic	physiological	physiological	physiological	anatomical or	concepts in fluids to
hemodynamic	components related		components related	physiological	anatomical or
assessment of heart	to human circulation	to human circulation	to human circulation	components related	physiological
valves				to human circulation	components related
					to human circulation

Appendix 2: The EAB (Engineering Accreditation Board) Accreditation SLOs (Student Learning Outcomes)

- a) **Engineering knowledge:** Apply the knowledge of mathematics, natural science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems
- b) **Problem Analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c) **Design/development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- d) **Investigation:** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e) **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
- f) **The engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- g) **Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for the sustainable development.
- h) **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i) **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- j) Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- k) Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and economic decision-making, and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- I) Life-long Learning: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change