Academic Year	AY23/24	Semester	2
Course Coordinator	Lu Yunpeng	5	
Course Code	CM4043		
Course Title	Molecular I	Modelling: Pri	nciples and Applications
Pre-requisites	CM3041 or	(CH2108 and	CH2123) by permission
No of AUs	3		
Contact Hours	Lectures: 2	6 hours (2 ho	urs per week);
	Laboratory	: 36 hours (3 ł	nours per week)
Proposal Date	2 August 20	023	

Course Aims

The teaching content of this course includes two parts: 1) to learn Python programming and its applications in numerical simulations in chemical science; 2) to learn basic computational chemistry and its applications with *ab initio* software. Content of the first part aims to build your strength in solving chemical problems with home-made computation program. Content of the second part aims to train students to be able to study organic chemistry related problems by using computational software.

Intended Learning Outcomes (ILO)

By the end of this course, you (as a student) would be able to:

Numerical simulations with Python

- 1. Use Numpy package for general scientific computation
- 2. Use Matplotlib package for data visualization
- 3. Use Scipy package for specific scientific computation
- 4. Develop python program to solve common ordinary differential equations (ODEs) and partial differential equations in chemical sciences

Computational chemistry with *ab initio* software

- 5. Identify computable problems in chemistry
- 6. Formulate meaningful study problems that you want to explore in chemistry
- 7. Collect/extract computational results, visualize and perform exploratory analysis on results.
- 8. Perform ab initio calculations to study molecular properties.
- 9. Perform ab initio calculations to study reaction mechanism of organic chemical reaction
- 10. Present your analysis results and problem solution via an engaging written communication.

Course Content

Numerical simulations with Python

- 1. Introduction to numpy package
- 2. Introduction to matplotlib package
- 3. Introduction to Scipy package
- 4. Numerical applications to solve ODEs and PDEs in chemical science

Computational chemistry with ab initio software

- 5. General principles in computational chemistry
- 6. *ab intio* calculation methods
- 7. Molecule Building, Visualization, Molecule databases
- 8. Molecular properties based on computation
- 9. Thermodynamics and kinetics of organic reactions
- 10. Analysis of organic reaction mechanisms

Assessment (includes both continuous and summative assessment)

Component	Course ILO Tested	Related Programme LO or Graduate Attributes	Weighting	Team/Individual	Assessment rubrics
1. Group Projects	All	Competence, Communicati on, Civic- mindedness, Character, Creativity.	40%	Team (20%) and Individual (20%)	Appendix 2, 3
2. Lab assignments	All	Competence	20%	Individual	Appendix 1
3. Examination	All	Competence, Creativity, Communicati on.	40%	Individual	Point-based marking (not rubrics based)
Total	1		100%		

Formative feedback

You will receive written and verbal feedback from the lecturer for Components 2 & 3.

You will receive summative group feedback on the group project in component 1.

Learning and Teaching approach

Approach

	achieving the learning outcomes?
Lectures	Present the key ideas and important steps used to solve different types of problems.
Lab Tutorials	Develop proficiency in problem solving skills. Reinforce concepts already covered in the lectures. Give an opportunity for weaker or more reserved students to clarify doubts.
Group projects	Train the class on teamwork and cohesion, as well as to boost confidence for weaker students. Develop communications skills. Students will be able to learn the importance of teamwork.

Reading and References

- 1. Alan Hinchliffe (2008) *Molecular Modelling for Beginners*, 2nd Edition, John Wiley & Sons, ISBN: 978-0-470-51314-9
- 2. <u>Hill</u> Christian (2016) *Learning Scientific Programming with Python,* 1st edition. Cambridge University Press. ISBN-13: 978-1107428225
- 3. Jeremy Harvey (2018) *Computational Chemistry*. Cambridge University Press. ISBN-13: 978-0198755500
- 4. Frank Jensen (2016) *Introduction to Computational Chemistry*, 3rd edition. John Wiley & Sons, ISBN-13: 978-1118825990
- 5. Daan Frenkel (2023) Understanding Molecular Simulation: From Algorithms to Applications, 3rd edition. Associated Press, ISBN-13: 978-0323902922

Course Policies and Student Responsibilities

(1) General

You are expected to complete all assigned pre-class readings and activities, attend all tutorial classes punctually and take all scheduled assignments and tests by due dates. You are expected to participate in all tutorial discussions and activities.

(2) Absenteeism

Absence from the midterm without a valid reason will affect your overall course grade. Valid reasons include falling sick supported by a medical certificate and participation in NTU's approved activities supported by an excuse letter from the relevant bodies. There will be no make-up opportunities for CA components.

All project assignments must be submitted on time. Failure to do so will affect your score.

Academic Integrity

Good academic work depends on honesty and ethical behaviour. The quality of your work as a student relies on adhering to the principles of academic integrity and to the NTU Honour Code, a set of values shared by the whole university community. Truth, Trust and Justice are at the core of NTU's shared values.

As a student, it is important that you recognize your responsibilities in understanding and applying the principles of academic integrity in all the work you do at NTU. Not knowing what is involved in maintaining academic integrity does not excuse academic dishonesty. You need to actively equip yourself with strategies to avoid all forms of academic dishonesty, including plagiarism, academic fraud, collusion and cheating. If you are uncertain of the definitions of any of these terms, you should go to the <u>academic integrity website</u> for more information.

Use of Generative Artificial Intelligence (GAI) such as ChatGPT is allowed in the course but students need to adhere to NTU's prevailing guideline. i.e. **Give proper citations if you use any AI tool**. Extending the practice of correctly citing references in your work under NTU's policies on citation and plagiarism, the University requires students to (i) identify any generative AI tools used and (ii) declare how the tools are used in submitted work. Please note that even with acknowledgement, copying of output generated by AI tools (in part or whole) may still be regarded as plagiarism. Consult your instructor(s) if you need any clarification about the requirements of academic integrity in the course.

Instructor	Office Location	Phone	Email
Lu Yunpeng	CBC-06-23	65132747	yplu@ntu.edu.sg

Course Instructors

Planned	Weekly	Schedule
---------	--------	----------

Week	Торіс	Course ILO	Readings/ Activities
1	Introduction to Numpy in scientific computing, Part I, Basic	1	Readings: Study several program using numpy package Activities: Students will be asked to develop their simple program in lab tutorials
2	Introduction to Numpy in scientific computing, Part II, Intermediate	1	Readings: Study several program using numpy package Activities: Students will be asked to develop their simple

			program in lab	1
			tutorials.	
3	Introduction to	2	Readings: Study]
	Matplotlib in data		several program using	
	visualization, Part 1,		Matplotlib to plot	
	Basic		data in 2D plane	
			Activities: Students	
			will be asked to	
			develop their simple	
			program in lab	
			tutorials.	
4	Introduction to	2	Readings: Study	1
	Maplotlib in data		several program using	
	visualization. Part 2.		Matplotlib to plot	
	Intermediate		data in 3D plane	
	internediate		Activities: Students	
			will be asked to	
			develop their simple	
			nrogram in Jah	
			tutorials	
5	Introduction to sciny	3	Readings: Study	-
5	nackage in scientific	5	several program using	
	computing Part I		sciny nackage in	
	Basic			
	Dasic		Activities: Students	
			will be asked to	
			develop their simple	
			nrogram in Jab	
			tutorials	
6	Introduction to sciny	3	Readings: Study	1
0	nackage in scientific	5	several program using	
	computing Part II.		sciny nackage in	
	Intermediate			
	internetiate		Activities: Students	
			will be asked to	
			develop their simple	
			nrogram in Jah	
			tutorials	
7	Numerical	4	Readings: Study	1
(computation		several program using	
	annlications with		the above packages	
	Bython in chemical		to solve some ODEs	
	science		and PDEs in chamical	
	SUEILE		and FDES III CHEIIIICA	
			roculto	
			Activities: Students	
			will be acked to	
			dovolon their simple	
			program in Jah	
	1		tutoriais. They will	1

			also discuss the
			rosults and the
		_	cnemical phenomena
8	Introduction to	5	Readings: Lecture
	computational		notes
	chemistry I. Basic		
	Principles		Activities: Students
			will start learning the
			basic operations with
			Gaussian 09 and
			GaussView 5.0 in the
			lab tutorial for this
			topic.
9	Introduction to	5.6	Readings: Lecture
	computational	,	notes
	chemistry II. Different		
	Methods in ab initio		Activities: Students
	Calculations		will start learning the
			hasic operations with
			Gaussian 09 and
			GaussView 5.0 in the
			lab tutorial for this
10	Introduction to	7.0	topic.
10		7,8	Readings: Lecture
			notes
	Chemistry III. Graphical		
	Molocular Properties		Activities: Students
			will start learning the
			basic operations with
			Gaussian 09 and
			GaussView 5.0 in the
			lab tutorial for this
			topic.
11	Introduction to	9, 10	Readings: Lecture
	computational		notes
	chemistry IV. General		
	Applications of ab intio		Activities: Students
	Calculations		will start learning the
			basic operations with
			Gaussian 09 and
			GaussView 5.0 in the
			lab tutorial for this
			topic.
12	Group Project	1-4	Both lecture and lab
	,		tutorial time will be
			used for project
			presentation.
13	Group Project	5-10	Both lecture and lah
			tutorial time will he
		1	

	used for project presentation.	

Appendix 1: Assessment Criteria for Lab Assignments Standards Criteria

Levels of Performance	Criteria Description
A+ (Exceptional) A (Excellent)	Provides clear, efficient, working and well-documented code; evidence of programing understanding and concern for code efficiency beyond getting
	correct solution. Demonstrated ability to develop multiple approaches to programming task, and understanding of their respective advantages.
A- (Very good) B+ (Good)	Provides clear, efficient, working and well-documented code; evidence of programing understanding.
B (Average)	Working but limited documentation of code.
B- (Satisfactory)	
C (Bordering unsatisfactory)	Write the code with lots of help from TA and instructor.
C- (Unsatisfactory)	Limited code documentation or demonstration of conceptual understand.
D (Deeply unsatisfactory) F (0-44)	Lack of demonstrated conceptual understanding. Non-functional code.
1	1

Appendix 2: Assessment Criteria for Group Project (20%) Standards Criteria

Levels of Performance Criteria Description	Levels of Performance	Criteria Description
--	-----------------------	----------------------

A+ (Exceptional) A (Excellent)	 Provides clear and meaningful study questions; appropriate methods for data presentation, manipulating and exploration; efficient, working and well-documented code; evidence of programing understanding and concern for code efficiency beyond getting correct solution. Takes an original approach to the questions; very well structured reports with good interpretations of results; evidence of excellent ability to apply knowledge taught in the course while thinking outside the box; provides clear, efficient, working and well-documented code Clearly identifies, illustrates and critically examines implications of the project in wider context of society. Provide source acknowledgement in standard citation format. All references and citations are present and correctly written.
A- (Very good) B+ (Good)	Takes a conventional approach to the question; good interpretation of results; evidence of ability to apply knowledge taught in the course; provides clear, efficient, working and well-documented code. Describes conventional links between project and wider context of society with clear illustrations, or identifies and examines implications of the project in the wider context of society.
	Provides source acknowledgement in standard citation format. One or two references or citations missing or incorrectly written.
B (Average) B- (Satisfactory) C+ (Marginally satisfactory)	Takes a conventional approach to the question; limited interpretation of results; evidence of some (but not significant) ability to apply knowledge taught in the course; working but limited documentation of code. States conventional links between project and wider context of society without clear illustrations, or acknowledges obvious implications of the project on the wider context of the society.
	Provides minimal source acknowledgement. Some information does not contain a citation.
C (Bordering unsatisfactory) C- (Unsatisfactory)	Limited understanding of process; incorrect or miss-interpreted results; limited evidence of ability to apply knowledge taught in the course. Non- functional or limited code documentation.
	Makes some weak connections or missed some obvious implications of the project and the wider context of society. Many references and citations are missing. Format has technical errors or
	is presented in inconsistent styles.
D, F (Deeply unsatisfactory)	inadequate in addressing the question; incorrect and/or miss- interpretation of results; lacks structure and focus, and is mostly or wholly off topic; inadequate capacity to apply knowledge taught in the course; non-functional code. OR failure to submit the report.

Makes little to no connection between the project and the wider context of society, or missed some obvious negative implications pf the project on the wider context of society.
References and citation errors detract significantly from paper. Little or no acknowledgment of sources.

Appendix 3: Assessment Criteria for Individual Contribution in Group Project (20%)

	Fail standard	Pass standard	High standard
	(0-39%)	(40-75 %)	(76-100 %)
Individual Contribution	Little contribution to the project	Participate meaningfully in the project	Contribute significantly in the development of the project
	Silent on the ideas of others Little or no interaction with group members Absent or was often late and leaving early Clueless when question on basic material/concepts	Show a willingness to discuss the ideas of others Cooperate with other group members Was present for most meetings, seldom late or leaving early Lead or Facilitate discussions	the project Constructively critique and build on the ideas of others Play an instrumental role in getting group members to cooperate Was present and punctual for all meetings Lead and Facilitate
		Demonstrate familiarity with most materials/concepts when question	discussions Demonstrate a high degree of familiarity with materials/concepts when question, often with detailed elaboration.

Please assess the work of you and your colleagues by using the following criteria. We will consider your feedback in assigning the grade for the project. Please try to be as honest and fair as possible in your assessment.

- 5 = Excellent work; was crucial component to group's success
- 4 = Very strong work; contributed significantly to group
- 3 = Sufficient effort; contributed adequately to group
- 2 = Insufficient effort; met minimal standards of group
- 1 = Little or weak effort; was detrimental to group (Written explanation to be submitted.)

- SELF Evaluation (Name: _____) Participation in developing ideas and planning project Willingness to discuss the ideas of others _):

 	Cooperation with other group members Interest and enthusiasm in project Participation in leading/facilitating discussion Ease and familiarity with discussion material
PEER 	Evaluation (Partner 1:): Participation in developing ideas and planning project Willingness to discuss the ideas of others Cooperation with other group members Interest and enthusiasm in project Participation in leading/facilitating discussion Ease and familiarity with discussion material
PEER 	Evaluation (Partner 2:): Participation in developing ideas and planning project Willingness to discuss the ideas of others Cooperation with other group members Interest and enthusiasm in project Participation in leading/facilitating discussion Ease and familiarity with discussion material
PEER I	Evaluation (Partner 3:): Participation in developing ideas and planning project

Participation in developing ideas and planning project
Willingness to discuss the ideas of others
Cooperation with other group members
Interest and enthusiasm in project
Participation in leading/facilitating discussion
Ease and familiarity with discussion material

Self-Reflection

What did you learn from the experience?

What do you think went well?

What would you have done differently, given the opportunity?

Do you have any other comments or suggestions about the project?

CBC Programme Learning Outcome

The Division of Chemistry and Biological Chemistry (CBC) offers an undergraduate degree major in Chemistry that satisfies the American Chemical Society (ACS) curricular guidelines and equips students with knowledge relevant to the industry. Graduates of the Division of Chemistry and Biological Chemistry should have the following key attributes:

<u>1. Competence</u>

Graduates should be well-versed in the foundational and advanced concepts of chemical science, be able to evaluate chemistry-related information critically and independently, and be able to use complex reasoning to solve emergent chemical problems.

2. Creativity

Graduates should be able to synthesize and integrate multiple ideas across the curriculum, and propose innovative solutions to emergent chemistry-related problems based on their training in chemistry.

3. Communication

Graduates should be able to demonstrate clarity of thought, independent thinking, and sound scientific analysis and reasoning through written and oral reports to audiences with varying technical backgrounds. They should also be able to effectively engage other professional chemists in collaborative endeavours.

4. Character

Graduates should be able to act in responsible ways and uphold the high ethical standards that the society expects of professional chemists.

5. Civic-mindedness

Graduates should be aware of the impact of chemistry on society, and how chemistry can be applied to benefit mankind. They should also be aware of and uphold the best chemical safety practices.