Index

σ-algebra, 631
Markov property, 146
complement rule, 633

absence of arbitrage, 23, 471
abstract Bayes formula, 435
accreting swap, 498
adapted process, 129
adjusted close price, 162, 580
admissible portfolio strategy, 167
affine model, 466
American
 binary option, 425
 forward contract, 427
 option
 call, 397
 dividend, 420, 423
 finite expiration, 409
 perpetual, 397
 put, 397
amortizing swap, 498
annuity numéraire, 497, 536, 551
approximation
 gamma, 484
 lognormal, 363
arbitrage, 19
 absence of, 23
 continuous time, 167
 discrete time, 51
 opportunity, 21
 price, 11, 36, 63, 72, 212
 triangular, 19
arithmetic average, 354
Asian
 basket option, 368
 call option, 358
 option, 353, 354, 356
asset pricing
 first theorem, 25
 continuous time, 169, 501
 discrete time, 62
 second theorem, 30
 continuous time, 169
 discrete time, 63
at the money, 52, 224
attainable, 29, 34, 71, 169
backward induction, 80, 82
backward stochastic differential equation, 230
Barone-Adesi & Whaley model, 420
barrier forward contract, 319
down-and-in
 long, 319, 781
down-and-out
 long, 319, 782
up-and-in
 long, 319, 777
up-and-out
 long, 319, 779
barrier level, 284
barrier option, 53, 283, 299
down-and-in
 call, 300
 put, 300
down-and-out
 call, 300, 308, 317
 put, 300, 311
parity relation, 300
up-and-in
 call, 300
 put, 300
up-and-out
 call, 300, 301
N. Privault

implicit scheme, 621, 624
first theorem of asset pricing, 25, 62, 169, 501
fixed
leg, 496
rate, 533
fixed income, 461
derivatives, 527
floating
leg, 496
rate, 533
strike, 54
floorlet, 535, 546
foreign exchange, 443
option, 446
foreign exchange option, 198
formula
Lévy-Khintchine, 571
smoothing, 571
Tanaka, 154, 714
Taylor, 734
forward
contract, 106, 173, 194, 457, 486, 729, 828
American, 427, 821
non-deliverable, 174
measure, 519, 528
price, 433
rate, 486
agreement, 486
spot, 486–488, 533
swap, 496
start option, 224
swap rate, 496
four-way zero-collar option, 8
Fourier synthesis, 120
FRA, 486
Fubini theorem, 574
fugazi (the), 240
future contract, 174, 687
FX option, 198
gains process, 76
Galton board, 98
Gamma, 179
gamma
approximation, 484
distribution, 641
function, 641
Greek, 178
process, 578
gap, 599
Garman-Kohlagen formula, 446
Gaussian
cumulative distribution function, 101, 532
distribution, 175, 640
random variable, 660
gearing, 79, 172
effective, 85, 172
Geman-Yor method, 362
generating function, 152, 659
geometric
average, 356, 380
Brownian motion, 142, 204
distribution, 644
Girsanov theorem, 209, 210, 231, 439
jump processes, 587, 604
Greeks, 179
Delta, 196, 220
Gamma, 178
Theta, 197, 228, 756
Vega, 320, 785
gross world product, 6, 14
guarantee
buy back, 7
price lock, 8
GWP, 6
Hartman-Watson distribution, 361
Hawaiian option, 355
heat
equation, 185, 619
map, 293
hedge and forget, 173
hedge ratio, 86, 173
hedging, 29, 81, 83, 90, 216
change of numéraire, 452
strategy, 217
static, 173, 686, 828, 886
with jumps, 612
Heston model, 261, 279
HIBOR, 495
historical
probability measure, 207
volatility, 237, 262
hitting
probability, 393
time, 387
HJM
condition, 501
model, 500
Ho-Lee model, 466
Hull-White model, 466, 501
implied
probability, 13
volatility, 240

This version: January 16, 2019
http://www.ntu.edu.sg/home/nprivault/index.html
Notes on Stochastic Finance

in the money, 52, 246, 681
independence, 635, 636, 639, 643, 645, 650, 658, 660
independent increments, 202, 589, 590
indicator function, 638
infimum, 645
infinitesimal, 135
information flow, 57
instantaneous forward rate, 489
interest rate
differential, 231
model
affine, 466
Constant Elasticity of Variance, 465
Courtadon, 465
Cox-Ingersoll-Ross, 464
Dothan, 466, 481
exponential Vasicek, 152, 465, 709
Ho-Lee, 466
Hull-White, 466
Marsh-Rosenfeld, 465
Vasicek, 461, 466
interest rate model
Courtadon, 517
Cox-Ingersoll-Ross, 191
intrinsic value, 37, 79, 172
invariant distribution, 268, 277, 462, 465
inverse Gaussian process, 579
IPython notebook, 64, 77, 80, 83, 111, 120, 175, 194, 241, 419, 696
Itô
formula, 137, 225
pathwise, 576
with jumps, 577
isometry, 123, 126, 131, 573
process, 137, 139, 170, 732
stochastic integral, 122, 130, 131, 201
table, 140
with jumps, 581
Jamshidian’s trick, 546
Jensen inequality, 105, 744
joint
cumulative distribution function, 642
probability density function, 642
jump-diffusion process, 599
knock-out option, 53, 300
Kullback-Leibler entropy, 605
Lévy
construction of Brownian motion, 120, 739
process, 578
Lévy-Khintchine formula, 571
Lagrangian, 485
law
of total expectation, 652
of total probability, 633, 636, 652
least square regression, 467
leg
fixed, 496
floating, 496
Leibniz integral rule, 502
leverage, 150, 197, 735
LIBOR
model, 494
rate, 494
swap rate, 498, 540, 542
Lipschitz function, 450
local
time, 154
volatility, 248, 622
log
contract, 195, 224, 281
option, 231
return, 238
dynamics, 142, 609
variance, 99, 146, 259
lognormal
approximation, 363
distribution, 99, 146, 483, 641, 743
long forward contract, 616, 617
lookback option, 326
call, 335
put, 321, 326, 329
Macaulay duration, 524
marginal
density, 643
distribution, 652
Margrabe formula, 450
mark to market, 36, 63, 72, 174, 212, 687
market
completeness, 30, 34, 62
making, 36
price of risk, 206, 210, 473
market terms and data, 79, 172
Markov property, 450, 454
Marsh-Rosenfeld model, 465, 517
martingale, 55, 115, 201, 384
compound Poisson, 592
continuous time, 168
discrete time, 58
measure
continuous time, 167, 603
discrete time, 61
method, 211

This version: January 16, 2019
http://www.ntu.edu.sg/home/nprivault/index.html
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>589, 590</td>
</tr>
<tr>
<td>submartingale</td>
<td>384</td>
</tr>
<tr>
<td>supermartingale</td>
<td>384</td>
</tr>
<tr>
<td>transform</td>
<td>59, 202</td>
</tr>
<tr>
<td>maturity</td>
<td>6</td>
</tr>
<tr>
<td>transformation</td>
<td>487</td>
</tr>
<tr>
<td>maximum of Brownian motion</td>
<td>285</td>
</tr>
<tr>
<td>mean</td>
<td></td>
</tr>
<tr>
<td>hitting time</td>
<td>396</td>
</tr>
<tr>
<td>reversion</td>
<td></td>
</tr>
<tr>
<td>mean square distance</td>
<td>657</td>
</tr>
<tr>
<td>measurability</td>
<td>128</td>
</tr>
<tr>
<td>Merton model</td>
<td>610</td>
</tr>
<tr>
<td>method</td>
<td></td>
</tr>
<tr>
<td>bisection</td>
<td>241</td>
</tr>
<tr>
<td>Newton-Raphson</td>
<td>241</td>
</tr>
<tr>
<td>Milstein discretization</td>
<td>627</td>
</tr>
<tr>
<td>Minkowski inequality</td>
<td>126, 127</td>
</tr>
<tr>
<td>model</td>
<td></td>
</tr>
<tr>
<td>trinomial</td>
<td>109</td>
</tr>
<tr>
<td>modified</td>
<td></td>
</tr>
<tr>
<td>Bessel function</td>
<td>464, 483</td>
</tr>
<tr>
<td>duration</td>
<td>524</td>
</tr>
<tr>
<td>moment</td>
<td></td>
</tr>
<tr>
<td>generating function</td>
<td>659, 880</td>
</tr>
<tr>
<td>moneyness</td>
<td>52</td>
</tr>
<tr>
<td>moving average</td>
<td>354</td>
</tr>
<tr>
<td>MPoR</td>
<td>206, 210, 473</td>
</tr>
<tr>
<td>Musiela notation</td>
<td>500</td>
</tr>
<tr>
<td>natural logarithm</td>
<td>46, 175</td>
</tr>
<tr>
<td>negative</td>
<td></td>
</tr>
<tr>
<td>binomial distribution</td>
<td>645</td>
</tr>
<tr>
<td>inverse Gaussian process</td>
<td>580</td>
</tr>
<tr>
<td>premium</td>
<td>25</td>
</tr>
<tr>
<td>risk premium</td>
<td>167</td>
</tr>
<tr>
<td>Nelson-Siegel</td>
<td>505, 508</td>
</tr>
<tr>
<td>Newton-Raphson method</td>
<td>241</td>
</tr>
<tr>
<td>nominal value</td>
<td>523</td>
</tr>
<tr>
<td>non-deliverable forward contract</td>
<td>174</td>
</tr>
<tr>
<td>noncentral Chi square</td>
<td>464, 726</td>
</tr>
<tr>
<td>nonlocal operator</td>
<td>608</td>
</tr>
<tr>
<td>notional</td>
<td>498</td>
</tr>
<tr>
<td>principal</td>
<td>545, 854, 855</td>
</tr>
<tr>
<td>numéraire</td>
<td>168, 431</td>
</tr>
<tr>
<td>annuity</td>
<td>497, 536</td>
</tr>
<tr>
<td>invariance</td>
<td>452</td>
</tr>
<tr>
<td>numéraire invariance</td>
<td>453</td>
</tr>
<tr>
<td>OLS</td>
<td>467</td>
</tr>
<tr>
<td>opening jump</td>
<td>599</td>
</tr>
<tr>
<td>optimal stopping</td>
<td>410</td>
</tr>
<tr>
<td>option</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>353</td>
</tr>
<tr>
<td>basket</td>
<td>368</td>
</tr>
<tr>
<td>call</td>
<td>358</td>
</tr>
<tr>
<td>at the money</td>
<td>224</td>
</tr>
<tr>
<td>barrier</td>
<td>53, 283</td>
</tr>
<tr>
<td>basket</td>
<td>368</td>
</tr>
<tr>
<td>bear spread</td>
<td>223, 744</td>
</tr>
<tr>
<td>binary</td>
<td>52, 104, 458, 683</td>
</tr>
<tr>
<td>bull spread</td>
<td>223, 744</td>
</tr>
<tr>
<td>cash-or-nothing</td>
<td>52, 458</td>
</tr>
<tr>
<td>chooser</td>
<td>228, 757</td>
</tr>
<tr>
<td>digital</td>
<td>52, 104, 458, 683</td>
</tr>
<tr>
<td>drawdown</td>
<td>351</td>
</tr>
<tr>
<td>effective gearing</td>
<td>85, 172</td>
</tr>
<tr>
<td>exotic</td>
<td>53, 54, 76, 90, 217, 283, 321, 353</td>
</tr>
<tr>
<td>extrinsic value</td>
<td>79, 172</td>
</tr>
<tr>
<td>foreign exchange</td>
<td>198</td>
</tr>
<tr>
<td>forward start</td>
<td>224</td>
</tr>
<tr>
<td>gearing</td>
<td>79, 172</td>
</tr>
<tr>
<td>Hawaiian</td>
<td>355</td>
</tr>
<tr>
<td>intrinsic value</td>
<td>79, 172</td>
</tr>
<tr>
<td>issuer</td>
<td>11</td>
</tr>
<tr>
<td>knock-out</td>
<td>53, 300</td>
</tr>
<tr>
<td>lookback</td>
<td>321</td>
</tr>
<tr>
<td>on average</td>
<td>353</td>
</tr>
<tr>
<td>on extrema</td>
<td>284</td>
</tr>
<tr>
<td>out of the money</td>
<td>227</td>
</tr>
<tr>
<td>path-dependent</td>
<td>90, 217</td>
</tr>
<tr>
<td>premium</td>
<td>79, 173</td>
</tr>
<tr>
<td>straddle</td>
<td>761</td>
</tr>
<tr>
<td>variance call</td>
<td>263</td>
</tr>
<tr>
<td>writer</td>
<td>11, 29</td>
</tr>
<tr>
<td>zero-collar</td>
<td>8</td>
</tr>
<tr>
<td>optional</td>
<td></td>
</tr>
<tr>
<td>sampling</td>
<td>389</td>
</tr>
<tr>
<td>stopping</td>
<td>389</td>
</tr>
<tr>
<td>order book</td>
<td>741</td>
</tr>
<tr>
<td>Ornstein-Uhlenbeck process</td>
<td>461</td>
</tr>
<tr>
<td>out of the money</td>
<td>52, 227</td>
</tr>
<tr>
<td>Paley-Wiener series</td>
<td>120</td>
</tr>
<tr>
<td>par value</td>
<td>470, 523</td>
</tr>
<tr>
<td>Partial integro-differential equation</td>
<td>608</td>
</tr>
<tr>
<td>partition</td>
<td>636</td>
</tr>
<tr>
<td>Pascal distribution</td>
<td>645</td>
</tr>
<tr>
<td>path freezing technique</td>
<td>547</td>
</tr>
<tr>
<td>path integral</td>
<td>79, 283, 436, 484</td>
</tr>
<tr>
<td>Euclidean</td>
<td>485</td>
</tr>
<tr>
<td>path-dependent option</td>
<td>90, 217</td>
</tr>
<tr>
<td>pathwise Itô formula</td>
<td>576</td>
</tr>
<tr>
<td>payable date</td>
<td>192</td>
</tr>
<tr>
<td>payer swap</td>
<td>496</td>
</tr>
<tr>
<td>payoff function</td>
<td>6, 7, 283</td>
</tr>
<tr>
<td>PDE</td>
<td></td>
</tr>
<tr>
<td>Black-Scholes</td>
<td>172, 189</td>
</tr>
</tbody>
</table>

This version: January 16, 2019

Notes on Stochastic Finance

integro-differential, 608
variational, 412
perfect
correlation, 510
physical delivery, 12, 51, 184
PIDE, 607, 608
Planck constant, 485
Poisson
compound martingale, 566, 603
distribution, 645
process, 559
compound, 595
portfolio, 18
process, 76
replicating, 83, 88
strategy, 29, 47, 71, 163
admissible, 167, 169
update, 163
value, 72
power option, 106, 192, 224, 225, 687
predictable process, 59, 75, 572
premium, 79, 173
price
critical, 420
price graph, 8, 104, 685
price lock guarantee, 8
pricing, 71, 76
with jumps, 605
principal amount, 545
probability
conditional, 635
density function, 639
joint, 642
distribution, 639
measure, 633
equivalent, 25, 31, 62, 169, 209
space, 629
process
counting, 559
Cox, 564
drawdown, 327
gamma, 578
inverse Gaussian, 578
predictable, 59, 75, 572
stable, 578
stopped, 388
variance gamma, 578
put option, 5, 6
put spread collar option, 105
Python code, 64, 77, 80, 83, 111, 120, 175,
194, 241, 419, 696
Quantlib, 544
quantmod, 162, 238, 469, 493, 580, 599
R code, 118, 120, 122, 125, 145, 162, 175,
178, 180, 181, 192, 194, 208, 241,
242, 257, 258, 267, 285, 309, 493,
544, 560, 565, 568, 579, 580, 647,
650
R package
bizdays, 180
quantmod, 162, 238, 469, 493, 580, 599
RQuantLib, 544
YieldCurve, 493
random
variable, 637
random sum, 654
rate
forward, 486
forward swap, 496
instantaneous forward, 489
LIBOR, 494
swap, 498
LIBOR swap, 540, 542
realized variance swap, 263
reflection principle, 283
relative entropy, 605
replicating portfolio, 83, 88
replication, 29
return
log, 238
Rho, 179
Riccati equation, 478, 733, 845
risk
counterparty, 83
market price, 206, 210, 473
premium, 25, 167
risk premium, 205
risk-free asset, 102, 161
risk-neutral measure, 12, 24, 603
continuous time, 167, 205
discrete time, 61
riskless asset, 102, 161
RQuantLib, 544
running maximum, 285, 286
SABR model, 279
second theorem of asset pricing, 30, 63, 169
self-financing portfolio, 452, 454
continuous time, 163, 164, 612
discrete time, 48
seller swap, 496
share right, 23
Sharpe ratio, 210
SHIBOR, 495
short selling, 34, 86, 183
ratio, 19

This version: January 16, 2019
http://www.ntu.edu.sg/home/nprivault/index.html
This version: January 16, 2019

Girsanov, 209, 210, 231, 439, 587, 604
stopping time, 389
Theta, 179, 197, 228, 756
TIBOR, 495
time
business, 180
time splitting, 153, 226, 711
tower property, 58, 60, 75, 76, 80, 132,
201, 203, 219, 220, 435, 473, 652,
655, 658, 675, 695
treasury note, 463
trend estimation, 237
triangle inequality, 127
triangular arbitrage, 19
trinomial model, 109
two-factor model, 511
uniform distribution, 640
vanilla option, 54, 76
variable rate, 533
variance, 653
log, 146
variance call option, 263
variance gamma process, 579
variance swap, 263
variational PDE, 402, 412
Vasicek model, 461, 466
Vega, 179, 320, 785
notional, 263
VIX®, 253
volatility
historical, 237, 262
implied, 240
local, 248, 622
smile, 244
surface, 243
variance call option, 263
warrant, 7, 183
stability, 320
terms and data, 180
West Texas Intermediate (WTI), 5
Wiener space, 2
yield, 486, 488, 533
bond, 480
compounded to maturity, 523
curve, 487
data, 493
YieldCurve (R package), 493
zero-collar option, 8
zero-coupon bond, 470

898
Author index

<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achdou, Y.</td>
<td>252</td>
</tr>
<tr>
<td>Albanese, C.</td>
<td>464</td>
</tr>
<tr>
<td>Applebaum, D.</td>
<td>578</td>
</tr>
<tr>
<td>Aristotle</td>
<td>5</td>
</tr>
<tr>
<td>Bachelier, L.</td>
<td>2, 121</td>
</tr>
<tr>
<td>Barone-Adesi, G.</td>
<td>420</td>
</tr>
<tr>
<td>Barrieu, P.</td>
<td>361</td>
</tr>
<tr>
<td>Benth, F.E.</td>
<td>368</td>
</tr>
<tr>
<td>Bermin, H.</td>
<td>346</td>
</tr>
<tr>
<td>Björk, T.</td>
<td>38, 508</td>
</tr>
<tr>
<td>Black, F.</td>
<td>170, 523, 533, 535</td>
</tr>
<tr>
<td>Bosq, D.</td>
<td>561</td>
</tr>
<tr>
<td>Boulding, K.E.</td>
<td>161, 432</td>
</tr>
<tr>
<td>Brace, A.</td>
<td>4, 513</td>
</tr>
<tr>
<td>Breeden, D.T.</td>
<td>251</td>
</tr>
<tr>
<td>Brémaud, P.</td>
<td>571</td>
</tr>
<tr>
<td>Brigo, D.</td>
<td>476, 512, 839</td>
</tr>
<tr>
<td>Brown, R.</td>
<td>1</td>
</tr>
<tr>
<td>Burdzy, K.</td>
<td>286</td>
</tr>
<tr>
<td>Carr, P.</td>
<td>265, 281, 362</td>
</tr>
<tr>
<td>Chan, C.M.</td>
<td>54</td>
</tr>
<tr>
<td>Charpentier, A.</td>
<td>493</td>
</tr>
<tr>
<td>Cont, R.</td>
<td>571, 578, 586, 592, 599</td>
</tr>
<tr>
<td>Cox, J.C.</td>
<td>63, 191, 464</td>
</tr>
<tr>
<td>Crepey, S.</td>
<td>355</td>
</tr>
<tr>
<td>Curran, M.</td>
<td>366</td>
</tr>
<tr>
<td>Da Fonseca, J.</td>
<td>278</td>
</tr>
<tr>
<td>Dahl, L. O.</td>
<td>368</td>
</tr>
<tr>
<td>Dana, R.A.</td>
<td>338</td>
</tr>
<tr>
<td>Dash, J.</td>
<td>436</td>
</tr>
<tr>
<td>Deelstra, G.</td>
<td>368</td>
</tr>
<tr>
<td>Demeterfi, K.</td>
<td>281</td>
</tr>
<tr>
<td>Derman, E.</td>
<td>250, 281, 523</td>
</tr>
<tr>
<td>Devore, J.L.</td>
<td>629</td>
</tr>
<tr>
<td>Di Nunno, G.</td>
<td>90, 219</td>
</tr>
<tr>
<td>Diallo, I.</td>
<td>368</td>
</tr>
<tr>
<td>Doob, J.L.</td>
<td>384, 389, 418</td>
</tr>
<tr>
<td>Dothan, L.U.</td>
<td>466, 481</td>
</tr>
<tr>
<td>Dudley, R.M.</td>
<td>127</td>
</tr>
<tr>
<td>Dufresne, D.</td>
<td>362</td>
</tr>
<tr>
<td>Dupire, B.</td>
<td>249</td>
</tr>
<tr>
<td>Dvoretzky, A.</td>
<td>286</td>
</tr>
<tr>
<td>Einstein, A.</td>
<td>2</td>
</tr>
<tr>
<td>El Karoui, N.</td>
<td>434, 453</td>
</tr>
<tr>
<td>El Khatib, Y.</td>
<td>346, 349</td>
</tr>
<tr>
<td>Erdos, P.</td>
<td>286</td>
</tr>
<tr>
<td>Eriksson, J.</td>
<td>54, 314</td>
</tr>
<tr>
<td>Ewald, C.-O.</td>
<td>381</td>
</tr>
<tr>
<td>Feller, W.</td>
<td>464, 726</td>
</tr>
<tr>
<td>Folland, G.B.</td>
<td>117</td>
</tr>
<tr>
<td>Föllmer, H</td>
<td>17, 26, 30, 62, 63, 101</td>
</tr>
<tr>
<td>Fouque, J.-P.</td>
<td>274</td>
</tr>
<tr>
<td>Fouque, J.P.</td>
<td>261, 274</td>
</tr>
<tr>
<td>Friz, P.</td>
<td>255, 265</td>
</tr>
<tr>
<td>Galton, F.</td>
<td>99</td>
</tr>
<tr>
<td>Gao, M.</td>
<td>278</td>
</tr>
<tr>
<td>Garman, M.B.</td>
<td>446</td>
</tr>
<tr>
<td>Gatarek, D.</td>
<td>4, 513</td>
</tr>
<tr>
<td>Gatheral, J.</td>
<td>255, 265, 274, 279</td>
</tr>
<tr>
<td>Geman, H.</td>
<td>360, 362, 434, 453, 795</td>
</tr>
<tr>
<td>Gerber, H.U.</td>
<td>423</td>
</tr>
<tr>
<td>Glasserman, P.</td>
<td>626</td>
</tr>
<tr>
<td>Guirri, S.</td>
<td>493</td>
</tr>
<tr>
<td>Hagan, P.S.</td>
<td>262, 280, 768</td>
</tr>
<tr>
<td>Han, J.</td>
<td>278</td>
</tr>
<tr>
<td>Harrison, J.M.</td>
<td>62, 63, 169</td>
</tr>
<tr>
<td>Heath, D.</td>
<td>4, 501</td>
</tr>
<tr>
<td>Heston, S.L.</td>
<td>261, 270</td>
</tr>
<tr>
<td>Hiriart-Urruty, J.-B.</td>
<td>27</td>
</tr>
<tr>
<td>Hirsch, F.</td>
<td>126</td>
</tr>
<tr>
<td>Ho, S.Y.</td>
<td>466</td>
</tr>
<tr>
<td>Hull, J.</td>
<td>466</td>
</tr>
</tbody>
</table>

This version: January 16, 2019

http://www.ntu.edu.sg/home/nprivault/index.html
Ikeda, N. 132, 203
Ingersoll, J.E. 191, 464
Itô, K. 2
Jacka, S.D. 413
Jacod, J. 629
Jamshidian, F. 452, 453, 531, 546
Jarrow, R. 4, 501
Jeanblanc, M. 338, 615
Kakutani, S. 286
Kallenberg, O. 659
Kamal, M. 281
Kani, I. 250
Kenn, A.G.Z. 358
Kim, Y.-J. 533
Kloeden, P.E. 146
Kohlhagen, S.W. 446
Korn, E. 626
Korn, R. 626
Kreps, D.M. 62, 63
Kroisandt, G. 626
Kumar, D. 262, 280, 768
Lacombe, G. 126
Lamberton, D. 90, 371
Lapeyre, B. 371
Lawi, S. 464
Lee, R. 265, 281
Lee, S.B. 466
Lemaréchal, C. 27
Lesniewski, A.S. 262, 280, 768
Leung, T. 197
Levy, E. 363
Li, Y. 278
Liinev, J. 368
Lipton, A. 198
Litzenberger, R.h. 251
Longstaff, F.A. 414, 417
Margrabe, W. 450
Martini, C. 278
Matsumoto, H. 357
Menkens, O. 381
Mercurio, F. 476, 512, 839
Merton, R. 4, 452
Meyer, P.A. 418
Mikosch, T. 722
Milevsky, M.A. 368
Morton, A. 4, 501
Musiela, A. 4
Musiela, M. 500, 513
Neuberger, A. 281
Nguyen, H.T. 561
Norris, J.R. 565
Øksendal, B. 90, 219
Paley, R. 120
Papanicolaou, A. 253, 261
Papanicolaou, G. 261, 274
Peng, S. 761
Persson, J. 54, 314
Pintoux, C. 482, 483
Pironneau, O. 252
Pitman, J. 629
Platen, E. 146
Pliska, S.R. 169
Poisson, S.D. 559
Prayoga, A. 484
Profeta, C. 297
Proske, F. 90, 219
Protter, P. 137, 146, 210, 218, 220, 439, 450, 453, 473, 474, 629
Rebonato, R. 262
Revuz, D. 117
Rochet, J.-C. 434, 453
Rogers, C. 373
Ross, S.A. 63, 191, 464
Rouault, A. 361
Roynette, B. 297
Rubinstein, M. 63
Rudin, W. 124, 126
Ruiz de Chávez, J. 90
Samuelson, P. 3
Santa-Clara, P. 524
Sato, K. 593
Schied, A. 17, 26, 30, 62, 63, 90, 101
Schoenmakers, J. 543, 544

This version: January 16, 2019
http://www.ntu.edu.sg/home/nprivault/index.html
Scholes, M. 4, 170
Schröder, M. 362
Schwartz, E.S. 414, 417
Scorsese, M. 240
She, Q.H. 278
Shi, Z. 373
Shiryaev, A.N. 169
Shiu, E.S.W. 423
Sircar, K.R. 253, 261, 274
Sircar, R. 197, 274
Sølna, K. 261, 274
Sornette, D. 524
Steele, J.M. 411
Tankov, P. 571, 578, 586, 592, 599
Teng, T.-R. 452, 535, 543
Thales 5
Toy, B. 523
Turnbull, S.M. 363
Uy, W.I. 483
Vanmaele, M. 368
Vašíček, O. 461, 466, 476
Vorst, A.C.F. 358
Wakeman, L. 363
Watanabe, S. 132, 203
Wei, X. 544
Whaley, R.E. 420
White, A. 466
Widder, D.V. 185
Wiener, N. 2, 120
Williams, D. 90
Wilmott, P. 423
Wong, H.Y. 54
Woodward, D.E. 262, 280, 768
Wu, X. 524
Yang, Z. 381
Yor, M. 117, 261, 297, 356, 360–362, 482, 795
Yu, J.D. 365, 484
Zhang, Q. 278
Zou, J. 281
References

Notes on Stochastic Finance

N. Privault

908

This version: January 16, 2019
http://www.ntu.edu.sg/home/nprivault/index.html
Notes on Stochastic Finance

This book is an introduction to the pricing and hedging of financial derivatives, including vanilla and exotic options, by stochastic calculus and partial differential equation methods. The presentation is done both in discrete and continuous-time financial models, with an emphasis on the complementarity between algebraic and probabilistic methods. In particular it covers the pricing of some interest rate derivatives, of American options, of exotic options such as barrier, lookback and Asian options, and stochastic models with compound Poisson jumps. The text is accompanied with a number of figures and simulations, and includes 20 examples based on actual market data. The concepts presented are illustrated by examples and by 183 exercises and 10 problems with their complete solutions.