Robust adaptive control of nonlinear discrete-time systems by backstepping without overparameterization

Ying Zhanga, Changyun Wenb,*, Yeng Chai Sohb

aAutomation Technology Division, Gintic Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075, Singapore
bSchool of Electrical and Electronics Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore

Received 9 November 1998; revised 16 February 2000; received in final form 6 October 2000

Abstract

This paper presents a robust backstepping adaptive controller to overcome the overparameterization problem in adaptive control of nonlinear discrete-time systems. It is shown that the proposed controller can guarantee the global boundedness of the states of the whole adaptive system in the presence of time-varying parametric and nonparametric uncertainties. It can also ensure that the tracking error falls within a compact set whose size is proportional to the magnitude of the uncertainties and disturbances.

Keywords: Discrete-time system; Time-varying system; Adaptive control; Nonlinear controller; Parameter projection; Backstepping

1. Introduction

Through the use of appropriate Lyapunov functions, much progress has been achieved in adaptive control of nonlinear continuous-time systems in the last few years (Kokotović, 1991; Kanellopoulos, Kokotović, & Morse, 1991; Marino, Praly, & Kanellopoulos, 1992; Pomet, & Praly, 1992; Krstić, Kanellopoulos, & Kokotović, 1995; Kanellopoulos, 1995). In contrast, very few results have been reported on nonlinear discrete-time systems (see Zhang, Wen, & Soh, 2000, and the references therein). This may be attributed to the difficulty to construct a discrete-time Lyapunov function whose increment is linear in the variations of its variables. As a preliminary study, the backstepping technique was employed in Yeh and Kokotović (1995) to design an adaptive controller for nonlinear discrete-time systems without using Lyapunov functions. In Zhao and Kanellopoulos (1997a) and Zhao and Kanellopoulos (1997b), another new recursive design scheme which is different from the standard backstepping approach was proposed for the adaptive control of nonlinear discrete-time systems. However, all these results in Yeh and Kokotović (1995); Zhao and Kanellopoulos (1997a) and Zhao and Kanellopoulos (1997b) were obtained in ideal cases where the systems are assumed to be modelled exactly. The design of an adaptive controller for uncertain nonlinear discrete-time systems remains unsolved. Again, the lack of suitable Lyapunov functions makes it a tough task to establish robust stability in the presence of model uncertainties.

Recently, the problem was addressed in Zhang et al. (1999) where local stability is guaranteed without using Lyapunov functions. Later, a similar backstepping adaptive controller was designed in Zhang, Wen, and Soh (2000) to achieve a global robust stability for a class of nonlinear discrete-time systems with uncertainties. However, the parameter estimation has to be performed in each backstepping step in Zhang et al. (2000) in order to obtain certain properties that are crucial to the robust stability analysis. This gives rise to the overparameterization problem as mentioned in Krstić et al. (1995). In the presence of unmodelled dynamics, this problem cannot be avoided in the same way as in Yeh and Kokotović (1995), where the parameter estimation is only carried out in the first step of backstepping design. Otherwise, only the unmodelled dynamics entering the system in the first system state equation can be considered in the properties of the parameter estimator. Also this problem...
cannot be easily solved by simply postponing the parameter estimation in Zhang et al. (2000) to the last backstepping step. This is because it is difficult to obtain those estimator properties in Zhang et al. (2000) which are crucial to the robust stability analysis as in Zhang et al. (2000).

In this paper, the overparameterization problem is addressed and an adaptive controller with only one parameter estimator is presented. As observed in Zhang et al. (1999, 2000), the parameter estimator needs to have similar properties as in Zhang et al. (2000) in order to establish robust stability in the same way as in Zhang et al. (2000). To this end, the parameter estimator in the proposed adaptive controller is not only postponed to the last step of the backstepping design but also constructed by using all the errors between the actual states and the virtual control variables in each backstepping step. In addition, all nonlinear system functions are employed in the normalization term of the parameter estimation. These make it possible to obtain those required properties by accounting for all the unmodelled dynamics no matter where they enter the system. It is shown that the proposed adaptive controller can guarantee the global stability of the adaptive system and a small-in-the-mean tracking error. Moreover, since only the lumped effect of the system nonlinearities are required in a sector, the restriction suffered by Zhang et al. (2000) are greatly relaxed, which greatly enlarges the class of systems considered in Zhang et al. (2000).

2. Problem formulation

Consider a class of uncertain nonlinear time-varying discrete-time systems described by

\[
\begin{align*}
\dot{x}_1^{i+1} &= x_2^i + \theta(t)x_1(x_1^i) + \eta_1(t), \\
\dot{x}_2^{i+1} &= x_3^i + \theta(t)x_2(x_1^i, x_2^i) + \eta_2(t), \\
& \vdots \\
\dot{x}_n^{i+1} &= x_{n+1}^i + \theta(t)x_n(x_1^i, x_2^i, \ldots, x_{n-1}^i) + \eta_n(t), \\
\eta(t) &= x_1(t),
\end{align*}
\]

where \(u(t) \) and \(y(t) \) represent the system input and output, respectively, and \(\theta(t) \) is the unknown time-varying parameter vector in \(\mathbb{R}^n \). For each \(1 \leq i \leq n \), \(\eta_i(x_1^i, \ldots, x_1^i) \) is a known nonlinear function which is continuous and satisfies \(\eta_i(0) = 0 \). For simplicity of illustration, \(\eta_i(x_1^i, x_2^i, \ldots, x_n^i) \) are denoted by \(\eta_i(t) \) for each \(i = 1, 2, \ldots, n \) in the remaining parts of the paper.

In the discrete-time system described by (1), two kinds of uncertainties are considered. One is parametric uncertainty denoted by the unknown time-varying parameter \(\theta(t) \). The other is the nonparametric uncertainty denoted by unknown functions \(\eta_i(t) \), which may often be due to modelling errors and external disturbances. For these uncertainties, we usually have the following assumptions.

Assumption A.1. The unknown parameter \(\theta(t) \) lies in a known convex compact set \(\Theta \), i.e.,

\[
\theta(t) \in \Theta = \{ \theta(t) : ||\theta(t)|| \leq k_\theta; ||\theta(t) - \theta' || \leq k_\theta, \forall \theta'(t) \in \Theta \},
\]

where \(k_\theta \) is a positive constant.

Assumption A.2.

\[
\sum_{t = t_0 + 1}^{t_0 + N} ||\theta(t) - \theta(t - 1)|| \leq k_c + \varepsilon_N, \quad \forall t_0 \geq 0, \quad N \geq 1,
\]

where \(k_c \) and \(\varepsilon_N \) are constants.

Remark 2.1. As no smallness restriction is imposed on \(k_c \), this assumption not only allows for slowly time varying parameters in a uniform way as in Wen and Hill (1992) and Wen (1994), but also takes into account time-varying parameters with big jumps.

Assumption A.3. There exist constants \(\varepsilon \) and \(d \) such that

\[
\eta_i(t) \leq c_\eta \varepsilon \max_{0 \leq r \leq t - 1} \| [x_1^r, x_2^r, \ldots, x_n^r]^T \| + d,
\]

where \(c_\eta \) is a constant. It will be shown later that knowledge of \(\varepsilon \) and \(d \) is not required to implement the proposed adaptive controller.

Remark 2.2. From (4), it is noted that the modelling error \(\eta_i(t) \) can have infinite memory as the function \(\max_{0 \leq r \leq t - 1} \| . \| \) is included. However, this makes the stability analysis more difficult especially when the knowledge of \(\varepsilon \) and \(d \) are not available.

For nonlinear functions \(\xi_i(t) \), we have the following assumption.

Assumption A.4. All the known nonlinear functions \(\xi_i(t) \) satisfy the following two conditions:

\[
k'_i \| [x_1^0, x_2^0, \ldots, x_n^0]^T \| \leq \sum_{i=1}^n \| \xi_i(t) \| + \sum_{i=1}^n \| \xi_i(t) \|, \]

where \(k'_i \) and \(k_i \) are arbitrary positive constants. All the norms in this paper are vector norms.
Remark 2.3. In comparison with the similar assumption employed in Zhang et al. (2000), (5) gives a weaker restriction on the nonlinearities as only the sum of $\|z_{i}(t)\|$ is assumed to be bounded below by the norm of the states. This condition is easier to satisfy than that required in Zhang et al. (2000) where each of functions $\|z_{i}(t)\|$ is required to be bounded below with a nonzero k_{a}.

The adaptive control problem is to obtain a control law for system (1) such that all the signals in the resulting closed-loop system are bounded for arbitrary bounded reference set-point $y_{m}(t)$ and initial conditions, and the tracking error $|y(t) - y_{m}(t)|$ is small in some sense.

3. Adaptive control design using backstepping technique

The desired controller can be obtained by performing the following backstepping procedures.

Step 1: Let
\[
\begin{align*}
\dot{z}_{1}^{1} &= x_{1}, \\
\dot{z}_{2}^{1} &= x_{2}^{1} + \hat{\theta}(t)z_{1}(t).
\end{align*}
\]
Then
\[
\dot{z}_{i}^{1} = \dot{z}_{i}^{1} + (\theta(t) - \hat{\theta}(t))z_{1}(t) + \eta_{1}(t).
\]
The update law for $\hat{\theta}(t)$ will be obtained in the last step of the backstepping design.

Step j ($2 \leq j \leq n - 1$): To proceed, the following functions are needed:
\[
\begin{align*}
\tilde{z}_{1,1}(t) &\triangleq z_{1}(z_{1}^{j}), \\
\tilde{z}_{1,2}(t) &\triangleq z_{1}(z_{2}^{j}).
\end{align*}
\]
\[
\begin{align*}
\tilde{z}_{i,j}(t) &\triangleq z_{i}(z_{i-j,1}, z_{i-j+1,2} - \hat{\theta}(t)\tilde{z}_{1,j-i+1}(t), \ldots, z_{i-j+j}) \\
&\quad - \sum_{k=1}^{j-i} \hat{\theta}(t)\tilde{z}_{k,j-k-1}(t), \ldots, z_{i-j+i} - \sum_{k=1}^{j-i} \hat{\theta}(t)\tilde{z}_{k,j-k-1}(t), \ldots, z_{i-j+1}.
\end{align*}
\]
where $1 \leq i \leq j - 1$.

Then
\[
\begin{align*}
\dot{z}_{j+1}^{j} &= x_{j+1}^{j} + \hat{\theta}(t)z_{j}(t) + \sum_{k=1}^{j-1} \hat{\theta}(t)\tilde{z}_{k,j}(t).
\end{align*}
\]

Step n: This is the last step of the backstepping design in which the control law and the adaptive law are given.

For system (1), the control law is taken as
\[
\begin{align*}
\dot{u}(t) &= y_{m}(t + n) - \sum_{i=1}^{n} f_{i}z_{i}^{n} - \hat{\theta}(t)\tilde{z}_{a}(t) - \sum_{k=1}^{n-1} \hat{\theta}(t)\tilde{z}_{k,n-1}(t),
\end{align*}
\]
where
\[
\tilde{z}_{i,n}(t)\triangleq z_{i}(z_{n-i,1}, z_{n-i+2} - \hat{\theta}(t)\tilde{z}_{1,n-i+1}(t), \ldots, z_{j}^{n})
\]
and f_{i} ($i = 1, 2, \ldots, n$) are the coefficients of a strictly stable polynomial $F(q^{-1})$, i.e., $F(q^{-1}) = 1 + f_{a}q^{-1} + \cdots + f_{1}q^{-n}$.

The update law for $\hat{\theta}(t)$ is given by
\[
\hat{\theta}(t + 1) = \varphi\left\{\hat{\theta}(t) + \frac{\sum_{i=1}^{n} z_{i}(t)\sum_{i=1}^{n} e_{i}(t + 1)}{1 + \sum_{i=1}^{n} z_{i}(t)^{2} + \sum_{i=1}^{n} ||z_{i}(t)||^{2}}\right\},
\]
where $\varphi \{ \cdot \}$ denotes a projection operator and $e_{i}(t + 1) = z_{i}^{n+1} - z_{i}^{*}$.

\[
\begin{align*}
e_{1}(t + 1) &= z_{1}^{n+1} - z_{1}^{*}, \\
e_{j}(t + 1) &= z_{j}^{n+1} - z_{j}^{*}, \quad j = 2, 3, \ldots, n - 1, \\
e_{n}(t + 1) &= z_{n}^{n+1} + \sum_{i=1}^{n-1} f_{i}z_{i} - y_{m}(t + n) - \chi_{n}(t + 1).
\end{align*}
\]

Compared with (Zhang et al., 2000), the parameter estimation is only carried out once in the last step. It is also noted that the parameter estimator given in (17) uses all the predicted errors in the backstepping steps, which will be found in the next section, it brings much convenience to the robust stability analysis.

Substituting (15) into (1), we have
\[
\begin{align*}
z_{n+1}^{n+1} &= y_{m}(t + n) - \sum_{i=1}^{n} f_{i}z_{i}^{n} + (\hat{\theta}(t) - \hat{\theta}(t))\tilde{z}_{a}(t) \\
&\quad + \chi_{n}(t + 1) + \eta_{a}(t),
\end{align*}
\]
where
\[
\chi_{n}(t + 1) = \sum_{k=1}^{n} \hat{\theta}(t + 1)^{T}\tilde{z}_{k,n-1}(t) + 1
\]
\[
- \sum_{k=1}^{n} \hat{\theta}(t)\tilde{z}_{k,n}(t + 1).
\]
The resulting closed-loop system is expressed by
\[
\begin{align*}
z(t + 1) &= Fz(t) + by_{m}(t + n) + \Psi(t + 1) + e(t + 1), \\
y(t) &= c^{T}z(t),
\end{align*}
\]
\[
\hat{\theta}(t + 1) = \varphi\left\{\hat{\theta}(t) + \frac{\sum_{i=1}^{n} \varphi_{i}(t + 1)\sum_{i=1}^{n-1} z_{i}(t)\sum_{i=1}^{n} e_{i}(t + 1)}{1 + \sum_{i=1}^{n} z_{i}(t)^{2} + \sum_{i=1}^{n} ||z_{i}(t)||^{2}}\right\},
\]
where

\[
F = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-f_1 & -f_2 & -f_3 & \cdots & -f_n
\end{bmatrix}, \quad z(t) = \begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\vdots \\
\varepsilon_n
\end{bmatrix},
\]

with

\[
e(t + 1) = [e_1(t + 1), e_2(t + 1), \ldots, e_n(t + 1)]^T,
\]

\[
\Psi(t + 1) = [\chi_1(t + 1), \chi_2(t + 1), \ldots, \chi_n(t + 1)]^T,
\]

4. Stability analysis

In this section, we will show that there exist small constants \(\varepsilon^*\) and \(\varepsilon_0^*\) such that for each \(\varepsilon \in [0, \varepsilon^*]\) and \(\varepsilon_0 \in [0, \varepsilon_0^*]\), all the signals in the closed-loop system (23) are bounded for any bounded initial conditions, bounded tracking reference signal and external disturbances. As observed in Zhang et al. (1999, 2000) the robust stability can be obtained using an inductive approach if the parameter estimator has similar properties as in Zhang et al. (1999, 2000). Thus, the properties of the parameter estimator (24) are firstly investigated and summarised in the following lemma. The proof of the lemma is given in the Appendix.

Lemma 1. Suppose \(M_0\) is a positive constant satisfying that \(\|x(0)\| \leq M_0, \|y_m(t)\|_\infty < M_0\), and \(d/(k_2 M_0) < \delta\) for \(0 < \delta < 1\), where \(x(0)\) denotes the initial conditions of the system. Assume that there exist constants \(M_1, k_1\) and \(k_2\) such that

\[
\|x(t_0 - 1)\| \leq M_0, \quad \|x(\tau)\| > M_0,
\]

\[
\tau = t_0, t_0 + 1, \ldots, t - 1,
\]

\[
\|x(\tau_1)\| < M_1, \quad \tau_1 = 0, 1, \ldots, t - 1,
\]

\[
M_1^2 = k_1 (k'_2 M_0)^2 + k_2 > M_0.
\]

Then (i)

\[
|e_i(t_0)| \leq (k_2 k_0 + a_1) M_0 + a_1, \quad (29)
\]

(ii)

\[
|e_i(t)| \leq \frac{\varepsilon_1}{\varepsilon_0} k_0 + a_1', \quad \forall t \geq t_0, \quad (30)
\]

\[
|\varepsilon(t + 1)| \leq \frac{\varepsilon_1}{\varepsilon_0} k_0 + a_1', \quad \forall t \geq t_0,
\]

where

\[
\hat{e}(t + 1) = \frac{\sum_{i=1}^n e_i(t + 1)}{(1 + \|\sum_{i=1}^n \varepsilon_i(t)\| + \sum_{i=1}^n \|\varepsilon_i(t)\|)^{1/2}}.
\]

\[
a_1 = c_n\varepsilon_0 (k_1^{1/2} + k_2^{1/2}) + k_0 \delta,
\]

\[
a_1' = n(c_n\varepsilon_0 (k_1^{1/2} + k_2^{1/2}) + \delta).
\]

(iii)

\[
\|\hat{e}(t + 1) - \hat{e}(t)\| \leq |\varepsilon(t + 1)|,
\]

where

\[
a_2 = 2(k_0 (k_1^{1/2} + k_2^{1/2}) + 2c_n\varepsilon_0 (k_1 + k_2)) n c_\varepsilon \varepsilon
\]

\[
+ 2c_\varepsilon \left(\frac{3}{2} + \frac{k_2}{k_0}\right) k_0 + a_1' + \frac{1}{2} n c_\varepsilon
\]

\[
a_3 = 2\delta (2\delta + k_0) n, \quad k_0^2 = nk_0^2 + 2k_0 \left(\frac{3}{2} + \frac{k_2}{k_0}\right) k_0 + a_1'.
\]

(iv)

\[
\|\hat{e}(t + 1)\| \leq c_1 \|e_{i,1,i-1}(t + 1)\| + c_2 \|z_{i,1,i}(t)\| |\varepsilon(t + 1)|,
\]

(35)

\[
\|\hat{e}(t_0)\| \leq (c_3 + c_4 a_1) M_0 + c_5 a_1., \quad (36)
\]

where

\[
z_{i,1,i}(t) = [z_{i,1,i+1}, \ldots, z_{i,n}]^T \in R^{(i-1)+1},
\]

\[
e_{i,1,i}(t) = [e_{i}(t), e_{i+1}(t), \ldots, e_{i,n}]^T \in R^{(i-1)+1},
\]

\[
\chi_{i,1,i}(t) = [\chi_{i}(t), \chi_{i+1}(t), \ldots, \chi_{i,n}(t)]^T \in R^{(i-1)+1}
\]

and \(c_i, \ (i = 1, 2, \ldots, 5)\) are constants depending on \(k'_2, k_2\) and \(k_0\).

From this lemma, it can be seen that the proposed parameter estimator has similar properties as in Zhang et al. (1999, 2000). It is noted from the proof of the lemma that these properties are obtained through the use of all prediction errors in the parameter estimator rather than simply postponing the parameter estimation to the last backstepping step.

Remark 4.1. Note that \(M_0\) is not a design parameter and it is only used for stability analysis. For any bounded \(x(0)\) and \(y_m(t)\), such a constant \(M_0\) always exists.

With these properties, the stability together with a tracking property of the closed-loop system can be established by following a similar method as in Wen.
Theorem 1. Consider the adaptive system consisting of plant (1), update law (17) and controller (15). Under Assumptions A.1–A.4, there exist constants ε^a and ε^b such that for each $\varepsilon \in [0,\varepsilon^a]$ and $\varepsilon_0 \in [0,\varepsilon^b]$, $\|z(t)\|$ is bounded for all bounded initial conditions and setpoints. In addition, the tracking error satisfies
\begin{equation}
\sum_{i=1}^{\gamma-1} |y_i(t) - \frac{1}{K} y_{m}(t)| \leq \beta_1 + \beta_2 O(\varepsilon, \varepsilon_0)(t - t_0),
\end{equation}
where $K = 1 + \sum_{i=1}^{\gamma} |f_i|$, β_1 and β_2 are constants, and $O(\varepsilon, \varepsilon_0)$ is a function such that $\lim_{t \to \infty, \varepsilon_0 \to 0} O(\varepsilon, \varepsilon_0) = 0$.

As a special case, it can be concluded that if there is no nonparametric uncertainty and the system parameters are constants, i.e., $\varepsilon = 0$, $\varepsilon_0 = 0$ and $\delta = 0$, $\|\omega(t + 1) - \hat{\omega}(t)\| \to 0$, $|e_i(t + 1)| \to 0$, and $|y(t) - (1/K)y_m(t)| \to 0$, which implies perfect tracking is achieved.

Remark 4.2. In the above theorem, ε^a and ε^b play a role like the stability margin for the overall system. The existence of such constants show certain degree of robustness of the proposed controller.

ε and ε_0 depend on the magnitude of the ignored unmodelled dynamics and variations rate of the nominal parameters. Clearly, small magnitude will give small ε and ε_0. In the ideal case, $\varepsilon = 0$ and $\varepsilon_0 = 0$. Similar to all the results on robustness (adaptive or nonadaptive) with respect to unmodelled dynamics, it is not necessary to specify the values of ε and ε_0 as they are not design parameters (Narendra & Annaswamy, 1989).

5. Conclusion

This paper presents a scheme of designing adaptive controller for a class of nonlinear uncertain discrete-time systems. The proposed adaptive controller overcomes the overparameterization problem in adaptive control of nonlinear discrete-time systems by backstepping design. The success is attributed to employing all the prediction errors of all the backstepping steps in the parameter adaptive law. It is different from the results in Yeh and Kokotovic (1995) and Zhang et al. (1999, 2000) where the overparameterization problem in the presence of unmodelled dynamics is usually very difficult to handle by simply postponing the parameter estimation to the last step. With the proposed controller, the global boundedness of the adaptive closed-loop system is guaranteed for any bounded initial conditions, set-point signals and external disturbances. Moreover, a small-in-the-mean tracking error can be achieved.

A.1 Appendix Proof of Lemma 1

In order to achieve the conclusions in Lemma 1, the following lemma is useful.

Lemma A.1. Using the same notations, we have the following inequality.
\begin{align}
|\tilde{y}(t + 1)^T \tilde{z}_{2,i+1} - \hat{y}(t)^T \tilde{z}_{2,i+1}(t)| \\
\leq c_{1,i} |e_{i} + \tilde{z}_{2,i}(t)| + c_{2,i} |\hat{y}_{i}(t + 1)| \\
+ c_{3,i} |\tilde{z}_{2,i+1}(t)| |\hat{y}(t + 1)|
\end{align}

(A.1)

Proof. Here an inductive strategy is adopted to verify (A.1). First, consider $i = 1$. From the definitions of $\tilde{z}_{1,1}(t)$ and $e_1(t + 1)$, (2), (6) and (33), we have
\begin{align}
|\tilde{y}(t + 1)^T \tilde{z}_{2,1} - \hat{y}(t)^T \tilde{z}_{2,1}(t)| \\
\leq |\tilde{y}(t + 1)^T \tilde{z}_{2,1} - \hat{y}(t)^T \tilde{z}_{2,1}(t)| \\
+ |\tilde{y}(t + 1)^T \tilde{z}_{2,1} - \hat{y}(t)^T \tilde{z}_{2,1}(t)| \\
\leq k_{9}k_{s} |z_{k}^1 - \tilde{z}_{k}^1 + k_{s} |z_{k}^{1+1}| |\hat{y}(t + 1) - \hat{y}(t)|
\end{align}

(A.2)

which obviously supports inequality (A.1). Particularly, if $k = 1$,
\begin{equation}
\chi_{2}(t + 1) \leq k_{9}k_{s} |e_{1}(t + 1)| + k_{s} |z_{1}^2| \hat{y}(t + 1),
\end{equation}

(A.3)

where $\chi_{1}(t + 1) = 0$ is used. This actually verifies (35) for $i = 1$.

Then consider $i = 2$, we have
\begin{align}
|\tilde{y}(t + 1)^T \tilde{z}_{2,2} - \hat{y}(t)^T \tilde{z}_{2,2}(t)| \\
\leq |\tilde{y}(t + 1)^T \tilde{z}_{2,2} - \hat{y}(t)^T \tilde{z}_{2,2}(t)| \\
+ |\tilde{y}(t + 1)^T \tilde{z}_{2,2} - \hat{y}(t)^T \tilde{z}_{2,2}(t)| \\
\leq k_{9}k_{s} \left(\left\|z_{k}^{1-1} - \tilde{z}_{k}^{1-1}\right\| + (|\tilde{y}(t + 1)^T \tilde{z}_{2,1} + 1) + \hat{y}(t + 1)^T \tilde{z}_{2,1}(t + 1)
\end{align}

(A.4)

Substituting (A.2) into (A.4) and using the definition of $e_k(t + 1)$ gives
\begin{align}
|\tilde{y}(t + 1)^T \tilde{z}_{2,2} - \hat{y}(t)^T \tilde{z}_{2,2}(t)| \\
\leq c_{1,2} |e_{k}(t + 1)| + c_{2,2} |\hat{y}_{k}(t + 1)| + c_{3,2} |\tilde{z}_{k}^{2+1}| |\hat{y}(t + 1)|
\end{align}

(A.5)

where $c_{1,2}$, $c_{2,2}$, and $c_{3,2}$ are constants combining k_{9} and k_{s}. Thus (A.1) holds for $i = 2$.

(1994) and Zhang et al. (1999, 2000) where an inductive strategy is adopt. The details are omitted here due to space limit.
Finally, assume (A.1) holds for all \(1 \leq p \leq i - 1, \) i.e.,
\[
|\tilde{\theta}(t + 1)^T \tilde{z}_{i,k}(t + 1) - \tilde{\theta}(t)^T \tilde{z}_{i,k+1}(t)| \\
\leq c_{1,p}|e_{k-p+1,k}(t+1)| + c_{2,p}|z_{(k-p+1,k)}(t+1)| \\
+ c_{3,p}|z_{(k-p+2,k+1)}(t)||\tilde{\eta}(t+1)|,
\]
(A.6)
where \(c_{1,p}, c_{2,p} \) and \(c_{3,p} \) are constants depending upon \(k_s \) and \(k_0. \) Then we show that (A.1) is also true for \(p = i. \)

From the definitions of \(\tilde{z}_{i,k}(t)\), it follows that
\[
|\tilde{\theta}(t + 1)^T \tilde{z}_{i,k}(t + 1) - \tilde{\theta}(t)^T \tilde{z}_{i,k+1}(t)| \\
\leq |\tilde{\theta}(t + 1)^T \tilde{z}_{i,k}(t + 1) - \tilde{\theta}(t)^T \tilde{z}_{i,k+1}(t)| \\
+ |\tilde{\theta}(t)^T \tilde{z}_{i,k+1}(t) - \tilde{\theta}(t)^T \tilde{z}_{i,k+1}(t)| \\
\leq k_0|z_{i,k-i+1}(t+1), \ldots, z_{i,k+1}^+ - \tilde{\theta}(t+1)^T z_{i,k-i+1}(t+1), \ldots, z_{i,k+2}^+| \\
- \sum_{l=1}^{i-1} \tilde{\theta}(t+1)^T z_{i,k-l}(t+1) \\
- \sum_{l=1}^{i-1} \tilde{\theta}(t)^T z_{i,k-l}(t+1) \\
+ ||\tilde{z}_{i,k+1}(t)||||\tilde{\theta}(t + 1) - \tilde{\theta}(t)||.
\]
(A.7)
Using (6), (33) and noting that \(\tilde{z}_{i,k+1}(t)\) is a function of \(z_{i,k+1}, z_{i,k-1}, \ldots, z_{i,k+i-2}\), we have
\[
|\tilde{\theta}(t + 1)^T \tilde{z}_{i,k}(t + 1) - \tilde{\theta}(t)^T \tilde{z}_{i,k+1}(t)| \\
\leq k_0 k_s|z_{(k-i+1,k)}(t + 1) - z_{(k-i+2,k+1)}(t)| \\
+ K' \sum_{l=1}^{i-1} |\tilde{\theta}(t + 1)^T \tilde{z}_{i,k-l}(t + 1) - \tilde{\theta}(t)^T \tilde{z}_{i,k-l+1}(t)| \\
+ k_s||z_{(k-i+2,k+1)}(t)||||\tilde{\theta}(t + 1)||,
\]
(A.8)
where \(K'\) is a constant depending on \(k_0 \) and \(k_s. \)

Substituting (19) and (A.6) into (A.8) gives
\[
|\tilde{\theta}(t + 1)^T \tilde{z}_{i,k}(t + 1) - \tilde{\theta}(t)^T \tilde{z}_{i,k+1}(t)| \\
\leq c_{1,i}|e_{(k-i+1,k)}(t+1)| + c_{2,i}|z_{(k-i+1,k)}(t+1)| \\
+ c_{3,i}|z_{(k-i+2,k+1)}(t)||\tilde{\eta}(t+1)|,
\]
(A.9)
where \(c_{m,i} \) (\(m = 1, 2, 3\)) are constants combining \(c_{m,p} \) (\(m = 1, 2, 3; 1 \leq p \leq i - 1, \) \(k_s \) and \(k_0. \)) Thus \(c_{m,i} \) (\(m = 1, 2, 3\)) are dependent on \(k_0 \) and \(k_s \) only. So, we have proved inequality (A.1).

Proof of Lemma 1. (i) From the definitions of \(e_i(t+1), \) we have
\[
e_i(t+1) \Delta \tilde{z}_{i,k} = -\tilde{\theta}(t)^T z_{i,k}(t) + \eta_i(t) \\
= (\tilde{\theta}(t)^T z_{i,k}(t) + \eta_i(t) = -\tilde{\theta}(t)^T z_{i,k}(t) + \eta_i(t).
\]
(A.10)

Applying Assumptions A.1, A.3 and A.4 gives
\[
|e_i(t + 1)| \leq k_0|z_{i,k}(t)| + c_{q,e} \max_{0 < \tau \leq t + 1} ||x(\tau)|| + d
\]
(A.11)
\[
\leq k_0 k_s||x_1, x_2, \ldots, x_i||^2 + c_{q,e}(k_1(k_s^2 M_0)^2 + 1)^{1/2} + d,
\]
(A.12)
where \(M_i^2 = k_1(k_s^2 M_0)^2 + k_2 \) is used.

Since \(||x(t_0 - 1)|| \leq M_0, \) it follows immediately that
\[
|e_i(t_0)| \leq k_0 k_s M_0 + c_{q,e}(k_1(k_s^2 M_0)^2 + k_2)^{1/2} + d \\
\leq k_0 k_s M_0 + c_{q,e}(k_1^2 + k_2^2)(M_0 + 1) + d \\
\leq k_0 k_s M_0 + c_{q,e}(k_1^2 + k_2^2)M_0 + \delta k_s M_0 \\
+ c_{q,e}(k_1^2 + k_2^2) + \delta k_s \\
\leq (k_0 k_s + a_1) M_0 + a_1.
\]
(A.13)

From (31), (A.12) and Assumption A.4, we have
\[
|\tilde{e}(t + 1)| = \frac{\sum_{i=1}^{n} ||e_i(t+1)||}{(1 + ||e_i(t+1)||^2 + \sum_{i=1}^{n} ||z_{i,k}(t)||^2)^{1/2}} \\
\leq \frac{k_s}{k_2} + n \frac{c_{q,e}(k_1(k_s^2 M_0)^2 + k_2)^{1/2} + d}{(1 + ||e_i(t+1)||^2 + \sum_{i=1}^{n} ||z_{i,k}(t)||^2)^{1/2}} \\
\leq \frac{k_s}{k_2} + n \frac{c_{q,e}(k_1(k_s^2 M_0)^2 + k_2)^{1/2} + d}{(1 + k_2^2 M_0)^{1/2}} \\
\quad \text{for } \tau \geq t_0 \\
\leq \frac{n k_s}{k_2} k_0 + n \delta + n c_{q,e}(k_1^2 + k_2^2) \leq \frac{k_{e}}{k_2} k_0 + a_1',
\]
(A.14)

(ii) Let \(\hat{\theta}(t)\) denote a parameter estimate before applying a projector \(\varphi, \) i.e.,
\[
\hat{\theta}_p(t) = \hat{\theta}(t) = \frac{\sum_{i=1}^{n} x_i(t) x_i(t)^2}{1 + ||x_i(t)||^2 + \sum_{i=1}^{n} ||x_i(t)||^2}.
\]
Then
\[
||\hat{\theta}(t) - \hat{\theta}|| = ||\hat{\theta}_p(t + 1) - \hat{\theta}|| \\
= \frac{||\sum_{i=1}^{n} x_i(t) e_i(t + 1)||}{1 + ||\sum_{i=1}^{n} x_i(t)||^2 + \sum_{i=1}^{n} ||x_i(t)||^2} \leq ||\tilde{e}(t + 1)||, \quad \forall \tau.
\]
(A.15)

(iii) Introducing \(e(t + 1) = \hat{\theta}(t + 1) - \hat{\theta}(t + 1)\), we get
\[
e(t + 1) - e(t) \leq \hat{\theta}_p(t + 1) - \hat{\theta}(t + 1) - \hat{\theta}(t) \\
\leq [\hat{\theta}_p(t + 1) - \hat{\theta}(t)]^T [\hat{\theta}_p(t + 1) - \hat{\theta}(t) + 2\hat{\theta}(t)]
\]
(A.16)
Combining (4), (30), (31), (A.10), (A.17) and (A.8), we have

\[
\begin{align*}
&= \frac{(\sum_{i=1}^{n} z_i(t))^2(\sum_{i=1}^{n} e_i(t + 1))^2}{(1 + ||\sum_{i=1}^{n} z_i(t)||^2 + \sum_{i=1}^{n} |z_i(t)|^2)^2} \\
&+ 2\sum_{i=1}^{n} z_i(t)^T \delta(t) \sum_{i=1}^{n} e_i(t + 1) \\
&- 2[\theta(t) - \theta(t - 1)]^T \delta(t - 1) \\
&+ \frac{\sum_{i=1}^{n} z_i(t)^T \sum_{j=1}^{n} e_j(t + 1)}{1 + ||\sum_{i=1}^{n} z_i(t)||^2 + \sum_{i=1}^{n} |z_i(t)|^2} \\
&\leq -2 \sum_{i=1}^{n} e_i(t + 1) \\
&\leq -2 \sum_{i=1}^{n} e_i(t + 1) + 2k_\theta \sum_{i=1}^{n} |z_i(t)| \\
&+ \frac{\sum_{i=1}^{n} |\eta_i(t)|^2}{1 + \sum_{i=1}^{n} |z_i(t)|^2}. \\
\end{align*}
\]

Therefore,

\[
\begin{align*}
\hat{v}(t + 1) &\leq v(t) - \hat{v}(t + 1) + 2n \kappa_\theta c_v (k_{1/2} + \kappa_{1/2}) \\
&\quad + 4n \kappa_\theta^2 c_v^2 (k_{1/2} + \kappa_{1/2}) \\
&\quad + 4n \kappa_\theta^2 c_v^2 (k_{1/2} + \kappa_{1/2}) \\
&\quad + 2 \hat{v}(t - \theta(t - 1)) \left(\frac{3}{2} + \frac{k_\theta}{k_\theta} \right) k_\theta + a_f \\
&\quad + 2 \hat{v}(t - \theta(t - 1)) \left(\frac{3}{2} + \frac{k_\theta}{k_\theta} \right) k_\theta + a_f. \\
\end{align*}
\]

Summing both sides of (A.20) gives

\[
\begin{align*}
&\sum_{t=t_0}^{t-1} \hat{v}(t) \leq ||\hat{v}(t_0)||^2 - ||\hat{v}(t)||^2 \\
&+ 2k_\theta \left(\frac{3}{2} + \frac{k_\theta}{k_\theta} \right) k_\theta + a_f + (a_2 + a_3) (t - t_0), \\
\end{align*}
\]

which confirms (34) by applying Assumption A.2.

(iv) Using Lemma A.1, it follows immediately from the definition of \(\chi_i(t + 1)\) that

\[
\begin{align*}
|\chi_i(t + 1)| &\leq c_{1,i} ||\chi_{i,j} + 1(t + 1)|| + c_{2,i} ||\chi_{i,j} + 1(t + 1)|| \\
&\quad + c_{3,i} ||\chi_{i,j} + 1(t + 1)|| ||\hat{v}(t + 1)||, \\
\end{align*}
\]

where \(c_{m,i} (m = 1, 2, 3)\) are constants.
Since $x_1(t+1) = 0$ and $x_2(t+1) \leq k_y k_y' |e_1(t+1)| + k_y k_y' |z(t-1)|$, it can be shown from (A.22) that

$$|x_i(t+1)| \leq c_{1,i} |e_1(t+1)|,$$

$$+ c_{2,i} ||z(t-1)|| |e(t+1)|,$$

(A.24)

where $c_{1,i}, c_{2,i}$ are constants combining k_y and k_y.

Taking $c_1 = \max_{1 \leq i \leq n} \{ c_{1,i} \}$ and $c_2 = \max_{1 \leq i \leq n} \{ c_{2,i} \}$, (35) follows.

Using (29) and inequality

$$||z(t_0 - 1)|| |e(t_0)|$$

$$\leq \frac{||z(t_0 - 1)|| \sum_{i=1}^{n} e_i(t_0)}{(1 + || \sum_{i=1}^{n} z_i(t_0 - 1)||^2 + \sum_{i=1}^{n} ||z(t_0 - 1)||^2)^{1/2}}$$

$$\leq \frac{b_n ||z(t_0 - 1)|| \sum_{i=1}^{n} e_i(t_0)}{(1 + k_y' ||z(t_0 - 1)||^2)^{1/2}}$$

$$\leq \frac{b_n (k_y k_y + a_i) M_n + a_i)}{k_y},$$

(A.25)

Eq. (36) follows.

Remark A.1. Note that the constants a_1, a_1' and a_2 are functions of e and e_0 which depends on the magnitude of the unmodelled dynamics, external disturbances and variations rate of the nominal parameters. In the ideal case that the system has no nonparametric uncertainties and all the nominal system parameters are constants, they are equal to zeros and the update law has the same properties as those given in Yeh and Kokotović (1995).

References

Dr. Zhang Ying received his B.E., M.E., and Ph.D. degrees in Electrical Engineering from Southeast University of P.R. China in 1989, 1992 and 1995, respectively. From 1996 to 1997, he was a post-doctoral fellow in Nanyang Technological University, Singapore. Since 1998, he has been with Gintic Institute of Manufacturing Technology as a Research Fellow. In 1999, he received the National Outstanding Doctoral Thesis Award from the State Council of China. Dr. Zhang has been engaged in research works on system modelling and adaptive control. His current work concentrates on image processing, fiber optic sensors and fiber optical communication.

Yeng Chai SOH received the B.Eng. (Hons. I) degree in electrical and electronic engineering from the University of Canterbury, New Zealand in 1983, and the Ph.D. degree in electrical engineering from the University of Newcastle, Australia, in 1987. From 1986 to 1987, he was a research assistant in the Department of Electrical and Computer Engineering, University of Newcastle. He joined the Nanyang Technological University, Singapore, in 1987 where he is currently an associate professor and the Head of the Control and Instrumentation Division, School of Electrical and Electronic Engineering. His current research interests are in the areas of adaptive control, robust system theory and applications, estimation and filtering, model reduction, signal processing, and neural network applications.

Changyun Wen received his B.Eng from Xian Jiaotong University in 1983 and Ph.D. from the University of Newcastle in Australia. From August 1989 to August 1991, he was a Postdoctoral Fellow at the University of Adelaide, Australia. Since August 1991, he has been with the School of Electrical and Electronic Engineering at Nanyang Technological University where he is currently an Associate Professor. His major research interests are in the areas of adaptive control, iterative learning control, robust control, signal processing and their applications to ATM congestion control. He is currently an Associate Editor of IEEE Transaction on Automatic Control.